留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于行为特征的雷达辐射源威胁评估

王俊迪 王星 田元荣 陈游

王俊迪,王星,田元荣,等. 基于行为特征的雷达辐射源威胁评估[J]. 北京航空航天大学学报,2024,50(10):3196-3207 doi: 10.13700/j.bh.1001-5965.2022.0848
引用本文: 王俊迪,王星,田元荣,等. 基于行为特征的雷达辐射源威胁评估[J]. 北京航空航天大学学报,2024,50(10):3196-3207 doi: 10.13700/j.bh.1001-5965.2022.0848
WANG J D,WANG X,TIAN Y R,et al. Threat assessment of radar radiation sources based on behavioral characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3196-3207 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0848
Citation: WANG J D,WANG X,TIAN Y R,et al. Threat assessment of radar radiation sources based on behavioral characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3196-3207 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0848

基于行为特征的雷达辐射源威胁评估

doi: 10.13700/j.bh.1001-5965.2022.0848
基金项目: 国家自然科学基金(62001489);陕西省自然科学基金(2021JM-225)
详细信息
    通讯作者:

    E-mail:tianyuanrong20@nudt.edu.cn

  • 中图分类号: TN974

Threat assessment of radar radiation sources based on behavioral characteristics

Funds: National Natural Science Foundation of China (62001489); China Postdoctoral Science Foundation (2021JM-225)
More Information
  • 摘要:

    针对当前雷达辐射源威胁评估对精确侦察数据依赖性较大的问题,提出一种基于行为特征的雷达辐射源威胁评估算法。从辐射源目标行为特征和数据融合理论出发,建立基于行为特征的辐射源威胁评估体系,并采用模糊理论和Vague数据集对各子行为进行表示;考虑到指标间的耦合性和空战的高动态性,利用改进的区间灰色关联度修正初始权重,建立以距离为自变量的态势状态函数,为各子行为动态赋权;采用改进的雷达图法计算威胁目标的威胁程度。仿真结果表明:所提算法具有较好的准确性和适应性。

     

  • 图 1  基于行为特征的威胁评估体系

    Figure 1.  Threat assessment system based on behavioral characteristics

    图 2  $ L(l) $和$ S(s) $隶属度曲线

    Figure 2.  The membership curves of $ L(l) $ and $ S(s) $

    图 3  改善因子与积累脉冲数的关系曲线

    Figure 3.  Relationship between improvement factor and accumulated pulse number

    图 4  $ {N_{{\mathrm{b}}i}}(i = 1,2,3) $隶属度曲线

    Figure 4.  The membership curve of $ {N_{{\mathrm{b}}i}}(i = 1,2,3) $

    图 5  $ {N_{{\mathrm{f}}i}}(i = 1,2,3) $隶属度曲线

    Figure 5.  The membership curve of $ {N_{{\mathrm{f}}i}}(i = 1,2,3) $

    图 6  $ {N_{{\mathrm{DR}}i}}(i = 1,2) $隶属度曲线

    Figure 6.  The membership curve of $ {N_{{\mathrm{DR}}i}}(i = 1,2) $

    图 7  $ {N_{{\mathrm{J}}i}}(i = 1,2,3) $隶属度曲线

    Figure 7.  The membership curve of $ {N_{{\mathrm{J}}i}}(i = 1,2,3) $

    图 8  多扇形雷达

    Figure 8.  Multi-sector radar chart

    图 9  空空作战场景示意图

    Figure 9.  Schematic diagram of air-to-air combat scenario

    图 10  属性指标间的关联程度

    Figure 10.  The degree of correlation between attribute indicators

    图 11  状态函数的变化趋势

    Figure 11.  Change trend of state function

    图 12  子行为权重的变化趋势

    Figure 12.  Change trend of sub-behavior weights

    图 13  350 km处各威胁目标雷达图

    Figure 13.  Radar map of each threat target at 350 km

    图 14  50 km处各威胁目标雷达图

    Figure 14.  Radar map of each threat target at 50 km

    图 15  目标威胁度柱状图

    Figure 15.  Histogram of target threat degree

    图 16  4种威胁评估算法对比

    Figure 16.  Comparison of four threat assessment algorithms

    表  1  运动行为模糊评价语言与Vague转换

    Table  1.   Fuzzy evaluation language of motor behavior and Vague transition

    威胁等级 Vague数据集数值
    高速远离 [0,0.305]
    中低速远离 [0.31,0.615]
    盘旋 [0.28,0.73]
    中低速接近 [0.39,0.69]
    高速接近 [0.7,1]
    下载: 导出CSV

    表  2  波束行为模糊评价语言与Vague转换

    Table  2.   Fuzzy evaluation language of beam behavior and Vague transition

    威胁等级 $ {\mathrm{Vague}} $数据集数值
    短暂驻留 [0,0.28]
    循环驻留 [0.22,0.78]
    长时间驻留 [0.72,1]
    下载: 导出CSV

    表  3  参数行为模糊评价语言与Vague转换

    Table  3.   Fuzzy evaluation language of parameter behavior and Vague transition

    威胁等级 ${\mathrm{ Vague}} $数据集数值
    低载频低占空比 [0,0.11]
    低载频高占空比 [0,0.22]
    中载频低占空比 [0,0.36]
    中载频高占空比 [0.14,0.72]
    高载频低占空比 [0,0.5]
    高载频高占空比 [0.39,1]
    下载: 导出CSV

    表  4  蓝方情报信息

    Table  4.   Blue intelligence information

    编号飞机型号载弹类型空空弹最大射程/km
    B1F-22战机空对空红外制导导弹、空对空雷达制导导弹150
    B2F-15战机空对空红外制导导弹、空对空雷达制导导弹100
    B3F-15战机空对空红外制导导弹、空对空雷达制导导弹100
    B4F-22战机空对空红外制导导弹、空对空雷达制导导弹150
    B5F-22战机空对地反辐射导弹、空对空雷达制导导弹150
    B6预警机
    下载: 导出CSV

    表  5  蓝方行为指标数据

    Table  5.   Blue square behavior indicator data

    编号 运动行为 载频$ {\text{/MHz}} $ 占空比$ {\text{/}}\% $ $ {{{T}}_{\mathrm{s}}}/{\text{μs}} $ $ {{{T}}_{\mathrm{e}}}/{\text{μs}} $ $ N $
    B1 中低速接近 9800 40 1 3071 512
    B2 中低速接近 9200 20 7910.00 9446.00 1024
    B3 高速接近 9100 20 4510 6097.2 512
    B4 高速接近 9500 40 3 3071 1024
    B5 盘旋 9000 20 1340.2 2799.4 512
    B6 盘旋 1500 2 4670 11070.00 64
    下载: 导出CSV

    表  6  蓝方行为模糊评价语言与Vague转换

    Table  6.   Fuzzy evaluation language of blue square behavior and Vague transition

    编号运动行为波束行为参数行为情报行为
    B1$ [0.39,0.69] $$ [{\text{0}}{\text{.22}},{\text{0}}{\text{.78}}] $$ [{\text{0}}{\text{.39}},{\text{1}}] $$ [{\text{0}}{\text{.82}},{\text{1}}] $
    B2$ [0.39,0.69] $$ [{\text{0}}{\text{.72}},{\text{1}}] $$ [{\text{0}}{\text{.39}},{\text{1}}] $$ [{\text{0}}{\text{.56}},{\text{0}}{\text{.76}}] $
    B3$ [0.7,1] $$ [{\text{0}}{\text{.22}},{\text{0}}{\text{.78}}] $$ [{\text{0}},{\text{0}}{\text{.5}}] $$ [{\text{0}}{\text{.56}},{\text{0}}{\text{.76}}] $
    B4$ [0.7,1] $$ [{\text{0}}{\text{.72}},{\text{1}}] $$ [{\text{0}}{\text{.39}},{\text{1}}] $$ [{\text{0}}{\text{.82}},{\text{1}}] $
    B5$ [0.28,0.73] $$ [{\text{0}},{\text{0}}{\text{.28}}] $$ [{\text{0}},{\text{0}}{\text{.5}}] $$ [{\text{0}}{\text{.72}},{\text{0}}{\text{.86}}] $
    B6$ [0.28,0.73] $$ [{\text{0}},{\text{0}}{\text{.28}}] $$ [{\text{0}},{\text{0}}{\text{.36}}] $$ [{\text{0}},{\text{0}}{\text{.23}}] $
    下载: 导出CSV

    表  7  行为评估初始权重

    Table  7.   Initial weights of behavior evaluation

    行为权重
    运动行为0.251 3
    波束行为0.260 6
    参数行为0.312 3
    情报行为0.175 8
    下载: 导出CSV

    表  8  各威胁目标威胁度

    Table  8.   Threat level of each threat target

    目标距离/km 威胁度
    B1 B2 B3 B4 B5 B6
    350 1.14 1.03 1.31 1.46 0.99 0.821
    50 1.119 1.272 1.014 1.44 0.781 0.658
    下载: 导出CSV
  • [1] ZHANG K, KONG W R, LIU P P, et al. Assessment and sequencing of air target threat based on intuitionistic fuzzy entropy and dynamic VIKOR[J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 305-310.
    [2] DENG Y. A threat assessment model under uncertain environment[J]. Mathematical Problems in Engineering, 2015, 2015: 878024.
    [3] ZHAO R J, YANG F B, JI L N, et al. Dynamic air target threat assessment based on interval-valued intuitionistic fuzzy sets, game theory, and evidential reasoning methodology[J]. Mathematical Problems in Engineering, 2021, 2021: 6652706.
    [4] LU Y L, LEI X L, ZHOU Z P, et al. Approximate reasoning based on IFRS and DS theory with its application in threat assessment[J]. IEEE Access, 2020, 8: 160558-160568.
    [5] DI R H, GAO X G, GUO Z G, et al. A threat assessment method for unmanned aerial vehicle based on Bayesian networks under the condition of small data sets[J]. Mathematical Problems in Engineering, 2018, 2018: 8484358.
    [6] HUANG L D, CAI G, YUAN H Y, et al. A hybrid approach for identifying the structure of a Bayesian network model[J]. Expert Systems with Applications, 2019, 131: 308-320.
    [7] GAO Y, LI D S, ZHONG H. A novel target threat assessment method based on three-way decisions under intuitionistic fuzzy multi-attribute decision making environment[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103276.
    [8] 翟翔宇. 基于全连接神经网络的空战目标威胁评估方法研究[D]. 太原: 中北大学, 2020.

    ZHAI X Y. Research on threat assessment method of air combat turget based on fully connected neural network[D]. Taiyuan: North University of China, 2020(in Chinese).
    [9] 郭辉, 徐浩军, 刘凌. 基于回归型支持向量机的空战目标威胁评估[J]. 北京航空航天大学学报, 2010, 36(1): 123-126.

    GUO H, XU H J, LIU L. Target threat assessment of air combat based on support vector machines for regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1): 123-126(in Chinese).
    [10] ZHAO R J, YANG F B, JI L N. An extended fuzzy CPT-TODIM model based on possibility theory and its application to air target dynamic threat assessment[J]. IEEE Access, 2022, 10: 21655-21669.
    [11] 奚之飞, 徐安, 寇英信, 等. 基于改进GRA-TOPSIS的空战威胁评估[J]. 北京航空航天大学学报, 2020, 46(2): 388-397.

    XI Z F, XU A, KOU Y X, et al. Air combat threat assessment based on improved GRA-TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 388-397(in Chinese).
    [12] 胡涛, 王栋, 孙曜, 等. 基于改进CRITIC-LRA和灰色逼近理想解排序法的空战威胁评估[J]. 兵工学报, 2020, 41(12): 2561-2569. doi: 10.3969/j.issn.1000-1093.2020.12.022

    HU T, WANG D, SUN Y, et al. Air combat threat assessment of improved CRITIC-LRA and grey TOPSIS[J]. Acta Armamentarii, 2020, 41(12): 2561-2569(in Chinese). doi: 10.3969/j.issn.1000-1093.2020.12.022
    [13] 杨爱武, 李战武, 李宝, 等. 基于动态变权重的空战态势评估[J]. 兵工学报, 2021, 42(7): 1553-1563. doi: 10.3969/j.issn.1000-1093.2021.07.023

    YANG A W, LI Z W, LI B, et al. Air combat situation assessment based on dynamic variable weight[J]. Acta Armamentarii, 2021, 42(7): 1553-1563(in Chinese). doi: 10.3969/j.issn.1000-1093.2021.07.023
    [14] ZHANG H, XIE J, SONG Y, et al. A novel ranking method for intuitionistic fuzzy set based on information fusion and application to threat assessment[J]. Iranian Journal of Fuzzy Systems, 2020, 17: 91-104.
    [15] ZHANG Q, HU J H, FENG J F, et al. Air multi-target threat assessment method based on improved GGIFSS[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(5): 4127-4139.
    [16] MA S D, ZHANG H Z, YANG G Q. Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation[J]. Aerospace Science and Technology, 2017, 67: 49-53.
    [17] 杨远志, 王红卫, 索中英, 等. 基于粗糙集-逼近理想解排序的辐射源威胁排序方法[J]. 兵工学报, 2016, 37(5): 945-952. doi: 10.3969/j.issn.1000-1093.2016.05.024

    YANG Y Z, WANG H W, SUO Z Y, et al. An emitter threat evaluation method based on rough set and TOPSIS[J]. Acta Armamentarii, 2016, 37(5): 945-952(in Chinese). doi: 10.3969/j.issn.1000-1093.2016.05.024
    [18] 张晓雷, 单洁, 王刚. 基于云重心评价法的雷达辐射源威胁评估[J]. 火力与指挥控制, 2017, 42(8): 10-14. doi: 10.3969/j.issn.1002-0640.2017.08.003

    ZHANG X L, SHAN J, WANG G. Research on threat assessment of radar radiation source based on cloud gravity center evaluation method[J]. Fire Control & Command Control, 2017, 42(8): 10-14(in Chinese). doi: 10.3969/j.issn.1002-0640.2017.08.003
    [19] 张莹, 王红卫, 陈游. 基于ICW-RCM的辐射源组合威胁评估[J]. 系统工程与电子技术, 2018, 40(3): 557-562. doi: 10.3969/j.issn.1001-506X.2018.03.11

    ZHANG Y, WANG H W, CHEN Y. Combined emitter threat assessment based on ICW-RCM[J]. Systems Engineering and Electronics, 2018, 40(3): 557-562(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.03.11
    [20] 徐宇恒, 程嗣怡, 周一鹏, 等. 基于Shapley-TOPSIS的辐射源威胁评估[J]. 空军工程大学学报(自然科学版), 2020, 21(2): 91-96.

    XU Y H, CHENG S Y, ZHOU Y P, et al. Radiator threat evaluating based on Shapley-TOPSIS[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(2): 91-96(in Chinese).
    [21] 董鹏宇, 王红卫, 陈游. 基于博弈论的GRA-TOPSIS辐射源威胁评估方法[J]. 北京航空航天大学学报, 2020, 46(10): 1973-1981.

    DONG P Y, WANG H W, CHEN Y. GRA-TOPSIS emitter threat assessment method based on game theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1973-1981(in Chinese).
    [22] 董鹏宇, 王红卫, 陈游. 区间条件下基于GRA和TOPSIS的辐射源威胁评估[J]. 控制与决策, 2021, 36(6): 1516-1522.

    DONG P Y, WANG H W, CHEN Y. Combining TOPSIS and GRA for emitter threat evaluation with interval number[J]. Control and Decision, 2021, 36(6): 1516-1522(in Chinese).
    [23] 陈振坤, 程嗣怡, 徐宇恒, 等. 数据缺失下基于IOWA-TOPSIS的辐射源威胁评估[J]. 空军工程大学学报(自然科学版), 2021, 22(1): 105-111.

    CHEN Z K, CHENG S Y, XU Y H, et al. A radiator threat assessment based on IOWA-TOPSIS under conditions of missing data[J]. Journal of Air Force Engineering University (Natural Science Edition), 2021, 22(1): 105-111(in Chinese).
    [24] 黄旭佳. 自适应雷达行为分析与辨识技术研究[D]. 成都: 电子科技大学, 2015.

    HUANG X J. Research on analysis and identification techniques for adaptive radar behavior[D]. Chengdu: University of Electronic Science and Technology of China, 2015(in Chinese).
    [25] 欧健. 多功能雷达行为辨识与预测技术研究[D]. 长沙: 国防科技大学, 2017.

    OU J. Research on behavior recognition and prediction techniques against multi-function radar[D]. Changsha: National University of Defense Technology, 2017(in Chinese).
    [26] 肖冰松, 方洋旺, 胡诗国, 等. 一种新的超视距空战威胁评估方法[J]. 系统工程与电子技术, 2009, 31(9): 2163-2166. doi: 10.3321/j.issn:1001-506X.2009.09.030

    XIAO B S, FANG Y W, HU S G, et al. New threat assessment method in beyond-the-horizon range air combat[J]. Systems Engineering and Electronics, 2009, 31(9): 2163-2166(in Chinese). doi: 10.3321/j.issn:1001-506X.2009.09.030
    [27] 熊升华, 吴胜, 陈振颂, 等. 广义直觉模糊熵及其在权重确定中的应用[J]. 控制与决策, 2017, 32(5): 845-854.

    XIONG S H, WU S, CHEN Z S, et al. Generalized intuitionistic fuzzy entropy and its application in weight determination[J]. Control and Decision, 2017, 32(5): 845-854(in Chinese).
    [28] 张莹, 王红卫, 郭晓陶, 等. IFS-BN结合的辐射源威胁评估方法[J]. 空军工程大学学报(自然科学版), 2017, 18(1): 63-68.

    ZHANG Y, WANG H W, GUO X T, et al. An assessment method of emitter threat based on intuitional fuzzy sets and Bayesian network[J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(1): 63-68(in Chinese).
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  92
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 录用日期:  2022-12-25
  • 网络出版日期:  2023-01-03
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答