留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机燃油箱水污染物数值建模

杨文举 邵垒 刘卫华 贺佳伟 陈博涵

杨文举,邵垒,刘卫华,等. 飞机燃油箱水污染物数值建模[J]. 北京航空航天大学学报,2024,50(11):3578-3586 doi: 10.13700/j.bh.1001-5965.2022.0850
引用本文: 杨文举,邵垒,刘卫华,等. 飞机燃油箱水污染物数值建模[J]. 北京航空航天大学学报,2024,50(11):3578-3586 doi: 10.13700/j.bh.1001-5965.2022.0850
YANG W J,SHAO L,LIU W H,et al. Numerical modeling of water contaminants in aircraft fuel tank[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3578-3586 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0850
Citation: YANG W J,SHAO L,LIU W H,et al. Numerical modeling of water contaminants in aircraft fuel tank[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3578-3586 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0850

飞机燃油箱水污染物数值建模

doi: 10.13700/j.bh.1001-5965.2022.0850
基金项目: 重庆市自然科学基金(CSTB2022NSCQ-MSX1301);飞行器环境控制与生命保障工业和信息化部重点实验室开放课题(KLAECLS-E-202002);重庆市教委科学技术研究项目(KJQN201900738);重庆交通大学研究生科研创新项目(CYS22435)
详细信息
    通讯作者:

    E-mail:shaolei@cqjtu.edu.cn

  • 中图分类号: V312.1

Numerical modeling of water contaminants in aircraft fuel tank

Funds: Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1301); Research Fund of Key Laboratory of Aircraft Environment Control and Life Support, MIIT (KLAECLS-E-202002); Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201900738); Chongqing Jiaotong University Graduate Research Innovation Project (CYS22435)
More Information
  • 摘要:

    为系统研究初始温度、初始相对湿度、载油率和溶解水相对饱和度对溶解水、冷凝水、析出水和游离水生成量的影响,基于传热传质方程建立水污染物生成模型。研究结果表明:在这4种因素中,初始温度对水污染物生成的影响最大,随着初始温度的增加,冷凝水呈现先减少后增多的趋势,游离水呈现增多的趋势,初始温度310 K生成的游离水较270 K增加了177%;初始相对湿度的影响最小,随着初始相对湿度的增加,冷凝水呈现增多的趋势,初始相对湿度100%时生成0.68 L冷凝水,为初始相对湿度40%时0.619 L的1.1倍;载油率的增加会导致燃油在下降阶段产生“回吸现象”,且随着载油率的增加“回吸现象”加强,冷凝水量呈现减少的趋势,而游离水量呈现增加的趋势,载油率100%时共生成游离水1.009 L,为40%时0.561 L的1.79倍;溶解水相对饱和度的增加会导致析出水量的增多,从而使游离水总量增加,溶解水相对饱和度100%总共生成游离水0.793 L为初始溶解度40%时0.335 L的2.37倍。

     

  • 图 1  燃油箱内水污染物分布示意

    Figure 1.  Distribution diagram of water contaminant in fuel tank

    图 2  水污染物数值模型流程

    Figure 2.  Flow chart of numerical model of water contaminant

    图 3  计算结果与文献[18]结果对比

    Figure 3.  Comparison of calculation and results in Ref. [18]

    图 4  初始温度对水污染物的影响

    Figure 4.  Effect of initial temperature on water contaminant

    图 5  初始相对湿度对水污染物的影响

    Figure 5.  Effect of initial relative humidity on water contaminant

    图 6  载油率对水污染物的影响

    Figure 6.  Effect of fuel load on water contaminant

    图 7  溶解水相对饱和度对水污染物的影响

    Figure 7.  Effect of relative saturation of dissolved water on water contaminant

    图 8  典型飞行包线下水污染物的计算结果

    Figure 8.  Calculation results of water contaminants under typical flight envelope

    表  1  初始温度参数

    Table  1.   Initial temperature parameters K

    工况燃油温度空气温度油箱壁面温度
    1270270270
    2280280280
    3290290290
    4300300300
    5310310310
    下载: 导出CSV

    表  2  4种因素对最终游离水量的影响

    Table  2.   Effects of four factors on final free water amount

    初始温度/K 游离体积
    (初始温度下)/L
    初始相对湿度/% 游离体积
    (初始相对湿度下)/L
    载油率/% 游离体积
    (载油率下)/L
    溶解水相对饱和度/% 游离体积
    (溶解水相对饱和度)/L
    270 0.318 20 0.596 20 0.399 20 0.182
    280 0.369 40 0.619 40 0.561 40 0.335
    290 0.467 60 0.640 60 0.718 60 0.487
    300 0.640 80 0.660 80 0.868 80 0.640
    310 0.880 100 0.680 100 1.009 100 0.793
    下载: 导出CSV
  • [1] PASSMAN F. Microbial contamination and its control in fuels and fuel systems since 1980—a review[J]. International Biodeterioration & Biodegradation, 2013, 81: 88-104.
    [2] HILL E C, HILL G C. Microbial contamination and associated corrosion in fuels, during storage, distribution and use[J]. Advanced Materials Research, 2008, 38: 257-268. doi: 10.4028/www.scientific.net/AMR.38.257
    [3] BRANCH A A I. Report on the accident to Boeing 777-236ER, GYMMM [R]. Hampshire: Air Accidents Inves-tigation Branch, 2010.
    [4] LAM J, HETHERINGTON J I, CARPENTER M. Ice growth in aviation jet fuel[J]. Fuel, 2013, 113: 402-406. doi: 10.1016/j.fuel.2013.05.048
    [5] ORESHENKOV A V. Accumulation of water in jet fuels. mathematical modeling of the process[J]. Chemistry and Technology of Fuels and Oils, 2004, 40(5): 320-325. doi: 10.1023/B:CAFO.0000046266.83408.d7
    [6] HEMIGHAUS G, BOVAL T, BACHA J, et al. Aviation fuels technical review[M]. California: Chevron Corporation, 2006: 1-90.
    [7] BAENA S, LAWSON D C P, W LAM D J K. Cold fuel test rig to investigate ice accretion on different pump inlet filter-mesh screens[C]// Proceedings of 28th International Congress of the Aeronautical Sciences. Brisbane: International Council of the Aeronautical Sciences, 2012: 3679-3689.
    [8] LAWSON C P, LIM K M. The state-of-the-art and the future of water management within fuel tanks[C]// Proceedings of 26th International Congress of the Aeronautical Sciences. Alaska: International Council of the Aeronautical Sciences, 2008: 2087-2097.
    [9] BAENA S, LAM J K W, LAWSON C. Effects of ice accre-tion in an aircraft protective mesh strainer of a fuel pump[C]// SAE Technical Paper Series. Warrendale: SAE International, 2015: 2449-2457.
    [10] SCHMITZ M, SCHMITZ G. Experimental study on the accretion and release of ice in aviation jet fuel[J]. Aerospace Science and Technology, 2018, 82/83: 294-303. doi: 10.1016/j.ast.2018.08.034
    [11] LAM J K W, CARPENTER M D, WILLIAMS C A, et al. Water solubility characteristics of current aviation jet fuels[J]. Fuel, 2014, 133: 26-33. doi: 10.1016/j.fuel.2014.04.091
    [12] NAYA S, CAO R, FRANCISCO-FERNÁNDEZ M, et al. Estimating water and solid impurities in jet fuel from ISO codes[J]. Energy & Fuels, 2013, 27(12): 7858-7867.
    [13] BAENA-ZAMBRANA S, REPETTO S L, LAWSON C P, et al. Behaviour of water in jet fuel—a literature review[J]. Progress in Aerospace Sciences, 2013, 60: 35-44. doi: 10.1016/j.paerosci.2012.12.001
    [14] LANGTON R, CLARK C, HEWITT M, et al. Aircraft fuel systems[M]. New York: Wiley, 2009.
    [15] LAO L Y, RAMSHAW C, YEUNG H, et al. Behaviour of water in jet fuel in a simulated fuel tank[C]// SAE Technical Paper Series. Warrendale: SAE International, 2011.
    [16] LIANG Z D. Corrosion of aluminum alloy in aircraft fuel tank compartments due to condensed water[J]. CORROSION, 1992, 48(6): 514-517. doi: 10.5006/1.3315968
    [17] TERADA Y, LAWSON C P, SHAHNEH A Z. Analytical investigation into the effects of nitrogen enriched air bubbles to improve aircraft fuel system water management[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(3): 861-870. doi: 10.1177/0954410017742422
    [18] TOMLINSON S, BARKER M, VENN D, et al. Mathematical model of water contamination in aircraft fuel tanks[C]// SAE Technical Paper Series. Warrendale: SAE International, 2011.
    [19] ZHEREBTSOV V L, PEGANOVA M M. Water solubility versus temperature in jet aviation fuel[J]. Fuel, 2012, 102: 831-834. doi: 10.1016/j.fuel.2012.06.070
    [20] CARPENTER M D, HETHERINGTON J I, LAO L, et al. Behaviour of water in aviation fuels at low temperature[C]//12th International Conference on Stability, Handling and Use of Liquid Fuels. Florida: International Association for Stability Handling and Use of Liquid Fuels, Inc. , 2011: 1036-1062.
    [21] WETTERWALD M, LAWSON C, LAM J. Feasibility study of OBIGGS for water contamination control in aircraft fuel tanks[C]// Proceedings of the 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2010.
    [22] Federal Aviation Administration (FAA). Airworthiness standards: Transport Category: 14 CFR Part 25 [S]. Washington: CFR, 2013.
    [23] 中国民用航空总局. 中国民用航空规章第 25 部: 运输类飞机适航标准: CCAR-25-R3—2001[S/OL]. [2001-05-14]. http://www.caac.gov.cn/XXGK/XXGK/MHGZ/201511/P020151103350126412647.pdf.

    Civil Aviation Administration of China. Civil Aviation Regulations of China, Part 25: Airworthiness standards for transport aircraft: CCAR-25-R3—2001[S/OL]. [2001-05-14]. http://www.caac.gov.cn/XXGK/XXGK/MHGZ/201511/P020151103350126412647.pdf(in Chinese).
    [24] CHEN T, XU X, HU J Q, et al. Water behavior of current jet fuel versus operating conditions: Storage time, temperature, relative humidity and anti-icing agent[J]. Fuel, 2022, 309: 122088. doi: 10.1016/j.fuel.2021.122088
    [25] KARGER D N, CONRAD O, BÖHNER J, et al. Climatologies at high resolution for the earth’s land surface areas[J]. Scientific Data, 2017, 4: 170122. doi: 10.1038/sdata.2017.122
    [26] BOGLER A, LIN S H, BAR-ZEEV E. Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: Principles, impacts and future directions[J]. Journal of Membrane Science, 2017, 542: 378-398. doi: 10.1016/j.memsci.2017.08.001
    [27] HUANG J Y, LIN C J, LI Y, et al. Effects of humidity, aerosol, and cloud on subambient radiative cooling[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122438. doi: 10.1016/j.ijheatmasstransfer.2021.122438
    [28] International Organization for Standardization. Standard atmosphere: ISO 2533: 1975[S]. Geneva: ISO, 1975: 1-3.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  100
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 录用日期:  2022-12-30
  • 网络出版日期:  2023-01-31
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答