-
摘要:
为系统研究初始温度、初始相对湿度、载油率和溶解水相对饱和度对溶解水、冷凝水、析出水和游离水生成量的影响,基于传热传质方程建立水污染物生成模型。研究结果表明:在这4种因素中,初始温度对水污染物生成的影响最大,随着初始温度的增加,冷凝水呈现先减少后增多的趋势,游离水呈现增多的趋势,初始温度310 K生成的游离水较270 K增加了177%;初始相对湿度的影响最小,随着初始相对湿度的增加,冷凝水呈现增多的趋势,初始相对湿度100%时生成0.68 L冷凝水,为初始相对湿度40%时0.619 L的1.1倍;载油率的增加会导致燃油在下降阶段产生“回吸现象”,且随着载油率的增加“回吸现象”加强,冷凝水量呈现减少的趋势,而游离水量呈现增加的趋势,载油率100%时共生成游离水1.009 L,为40%时0.561 L的1.79倍;溶解水相对饱和度的增加会导致析出水量的增多,从而使游离水总量增加,溶解水相对饱和度100%总共生成游离水0.793 L为初始溶解度40%时0.335 L的2.37倍。
Abstract:In order to study the effects of initial temperature, initial relative humidity, fuel load, and relative saturation of dissolved water on dissolved water, condensed water, precipitated water, and free water, this paper established a water contaminant generation model based on the heat and mass transfer equation. The results show that: Among the four factors, the initial temperature has the greatest influence on the formation of water contaminants. With the increase in the initial temperature, the condensed water decreases first and then increases, and the free water increases. The free water generated at the initial temperature of 310 K is 177% higher than that generated at 270 K. The effect of initial relative humidity is the smallest. With the increase in the initial relative humidity, the condensed water shows an increasing trend, and the initial relative humidity of 100% results in a generation of 0.68 L of condensed water, which is 1.1 times 0.619 L generated at the initial relative humidity of 40%. The increase in fuel load will lead to the phenomenon of fuel re-absorption in the descent stage, and with the increase in fuel load, the phenomenon of fuel re-absorption is strengthened. The amount of condensed water shows a decreasing trend, while the free water shows an increasing trend. When the fuel load is 100%, 1.009 L of free water is generated, which is 1.79 times 0.561 L generated at the fuel load of 40%. The increase in the relative saturation of dissolved water will lead to an increase in the amount of precipitated water, thus increasing the total amount of free water. The total free water generated at the relative saturation of the dissolved water of 100% is 0.793 L, which is 2.37 times 0.335 L generated at the initial solubility of 40%.
-
表 1 初始温度参数
Table 1. Initial temperature parameters
K 工况 燃油温度 空气温度 油箱壁面温度 1 270 270 270 2 280 280 280 3 290 290 290 4 300 300 300 5 310 310 310 表 2 4种因素对最终游离水量的影响
Table 2. Effects of four factors on final free water amount
初始温度/K 游离体积
(初始温度下)/L初始相对湿度/% 游离体积
(初始相对湿度下)/L载油率/% 游离体积
(载油率下)/L溶解水相对饱和度/% 游离体积
(溶解水相对饱和度)/L270 0.318 20 0.596 20 0.399 20 0.182 280 0.369 40 0.619 40 0.561 40 0.335 290 0.467 60 0.640 60 0.718 60 0.487 300 0.640 80 0.660 80 0.868 80 0.640 310 0.880 100 0.680 100 1.009 100 0.793 -
[1] PASSMAN F. Microbial contamination and its control in fuels and fuel systems since 1980—a review[J]. International Biodeterioration & Biodegradation, 2013, 81: 88-104. [2] HILL E C, HILL G C. Microbial contamination and associated corrosion in fuels, during storage, distribution and use[J]. Advanced Materials Research, 2008, 38: 257-268. doi: 10.4028/www.scientific.net/AMR.38.257 [3] BRANCH A A I. Report on the accident to Boeing 777-236ER, GYMMM [R]. Hampshire: Air Accidents Inves-tigation Branch, 2010. [4] LAM J, HETHERINGTON J I, CARPENTER M. Ice growth in aviation jet fuel[J]. Fuel, 2013, 113: 402-406. doi: 10.1016/j.fuel.2013.05.048 [5] ORESHENKOV A V. Accumulation of water in jet fuels. mathematical modeling of the process[J]. Chemistry and Technology of Fuels and Oils, 2004, 40(5): 320-325. doi: 10.1023/B:CAFO.0000046266.83408.d7 [6] HEMIGHAUS G, BOVAL T, BACHA J, et al. Aviation fuels technical review[M]. California: Chevron Corporation, 2006: 1-90. [7] BAENA S, LAWSON D C P, W LAM D J K. Cold fuel test rig to investigate ice accretion on different pump inlet filter-mesh screens[C]// Proceedings of 28th International Congress of the Aeronautical Sciences. Brisbane: International Council of the Aeronautical Sciences, 2012: 3679-3689. [8] LAWSON C P, LIM K M. The state-of-the-art and the future of water management within fuel tanks[C]// Proceedings of 26th International Congress of the Aeronautical Sciences. Alaska: International Council of the Aeronautical Sciences, 2008: 2087-2097. [9] BAENA S, LAM J K W, LAWSON C. Effects of ice accre-tion in an aircraft protective mesh strainer of a fuel pump[C]// SAE Technical Paper Series. Warrendale: SAE International, 2015: 2449-2457. [10] SCHMITZ M, SCHMITZ G. Experimental study on the accretion and release of ice in aviation jet fuel[J]. Aerospace Science and Technology, 2018, 82/83: 294-303. doi: 10.1016/j.ast.2018.08.034 [11] LAM J K W, CARPENTER M D, WILLIAMS C A, et al. Water solubility characteristics of current aviation jet fuels[J]. Fuel, 2014, 133: 26-33. doi: 10.1016/j.fuel.2014.04.091 [12] NAYA S, CAO R, FRANCISCO-FERNÁNDEZ M, et al. Estimating water and solid impurities in jet fuel from ISO codes[J]. Energy & Fuels, 2013, 27(12): 7858-7867. [13] BAENA-ZAMBRANA S, REPETTO S L, LAWSON C P, et al. Behaviour of water in jet fuel—a literature review[J]. Progress in Aerospace Sciences, 2013, 60: 35-44. doi: 10.1016/j.paerosci.2012.12.001 [14] LANGTON R, CLARK C, HEWITT M, et al. Aircraft fuel systems[M]. New York: Wiley, 2009. [15] LAO L Y, RAMSHAW C, YEUNG H, et al. Behaviour of water in jet fuel in a simulated fuel tank[C]// SAE Technical Paper Series. Warrendale: SAE International, 2011. [16] LIANG Z D. Corrosion of aluminum alloy in aircraft fuel tank compartments due to condensed water[J]. CORROSION, 1992, 48(6): 514-517. doi: 10.5006/1.3315968 [17] TERADA Y, LAWSON C P, SHAHNEH A Z. Analytical investigation into the effects of nitrogen enriched air bubbles to improve aircraft fuel system water management[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(3): 861-870. doi: 10.1177/0954410017742422 [18] TOMLINSON S, BARKER M, VENN D, et al. Mathematical model of water contamination in aircraft fuel tanks[C]// SAE Technical Paper Series. Warrendale: SAE International, 2011. [19] ZHEREBTSOV V L, PEGANOVA M M. Water solubility versus temperature in jet aviation fuel[J]. Fuel, 2012, 102: 831-834. doi: 10.1016/j.fuel.2012.06.070 [20] CARPENTER M D, HETHERINGTON J I, LAO L, et al. Behaviour of water in aviation fuels at low temperature[C]//12th International Conference on Stability, Handling and Use of Liquid Fuels. Florida: International Association for Stability Handling and Use of Liquid Fuels, Inc. , 2011: 1036-1062. [21] WETTERWALD M, LAWSON C, LAM J. Feasibility study of OBIGGS for water contamination control in aircraft fuel tanks[C]// Proceedings of the 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2010. [22] Federal Aviation Administration (FAA). Airworthiness standards: Transport Category: 14 CFR Part 25 [S]. Washington: CFR, 2013. [23] 中国民用航空总局. 中国民用航空规章第 25 部: 运输类飞机适航标准: CCAR-25-R3—2001[S/OL]. [2001-05-14]. http://www.caac.gov.cn/XXGK/XXGK/MHGZ/201511/P020151103350126412647.pdf.Civil Aviation Administration of China. Civil Aviation Regulations of China, Part 25: Airworthiness standards for transport aircraft: CCAR-25-R3—2001[S/OL]. [2001-05-14]. http://www.caac.gov.cn/XXGK/XXGK/MHGZ/201511/P020151103350126412647.pdf(in Chinese). [24] CHEN T, XU X, HU J Q, et al. Water behavior of current jet fuel versus operating conditions: Storage time, temperature, relative humidity and anti-icing agent[J]. Fuel, 2022, 309: 122088. doi: 10.1016/j.fuel.2021.122088 [25] KARGER D N, CONRAD O, BÖHNER J, et al. Climatologies at high resolution for the earth’s land surface areas[J]. Scientific Data, 2017, 4: 170122. doi: 10.1038/sdata.2017.122 [26] BOGLER A, LIN S H, BAR-ZEEV E. Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: Principles, impacts and future directions[J]. Journal of Membrane Science, 2017, 542: 378-398. doi: 10.1016/j.memsci.2017.08.001 [27] HUANG J Y, LIN C J, LI Y, et al. Effects of humidity, aerosol, and cloud on subambient radiative cooling[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122438. doi: 10.1016/j.ijheatmasstransfer.2021.122438 [28] International Organization for Standardization. Standard atmosphere: ISO 2533: 1975[S]. Geneva: ISO, 1975: 1-3.