留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可达区在线预测的GPI中制导协同拦截策略

王鹏 赵石磊 陈万春

王鹏,赵石磊,陈万春. 基于可达区在线预测的GPI中制导协同拦截策略[J]. 北京航空航天大学学报,2024,50(11):3463-3476 doi: 10.13700/j.bh.1001-5965.2022.0856
引用本文: 王鹏,赵石磊,陈万春. 基于可达区在线预测的GPI中制导协同拦截策略[J]. 北京航空航天大学学报,2024,50(11):3463-3476 doi: 10.13700/j.bh.1001-5965.2022.0856
WANG P,ZHAO S L,CHEN W C. Cooperative interception strategy for midcourse guidance of GPI based on online prediction of reachable area[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3463-3476 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0856
Citation: WANG P,ZHAO S L,CHEN W C. Cooperative interception strategy for midcourse guidance of GPI based on online prediction of reachable area[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3463-3476 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0856

基于可达区在线预测的GPI中制导协同拦截策略

doi: 10.13700/j.bh.1001-5965.2022.0856
详细信息
    通讯作者:

    E-mail:wanchun_chen@buaa.edu.cn

  • 中图分类号: V448.232;TJ765.3

Cooperative interception strategy for midcourse guidance of GPI based on online prediction of reachable area

More Information
  • 摘要:

    针对临近空间高超声速滑翔目标防御中存在目标机动能力强、机动意图不明确的问题,提出一种基于可达区在线预测的滑翔段拦截器(GPI)中制导协同拦截策略。基于滑翔弹道解析解给出针对目标横程机动的可达区在线预测方法。利用多项式拟合和反向传播(BP)神经网络给出GPI标控弹道的纵程可达区在线预测方法,并利用弹道解析解进一步给出拦截弹的横程可达区在线预测方法。通过对目标和拦截弹可达区在线预测,引入多弹协同思想,实现拦截弹可达区对目标可达区的覆盖,完成协同拦截策略的设计。拦截仿真分析表明:所提协同拦截策略可有效应对目标的倾侧反转机动。

     

  • 图 1  坐标系关系

    Figure 1.  Relationship between coordinate systems

    图 2  目标弹道曲线

    Figure 2.  Target trajectory

    图 3  东向再入弹道的横程机动可达区

    Figure 3.  Transverse range manoeuvre reachable area of east reentry trajectory

    图 4  GPI外形图

    Figure 4.  GPI outline drawing

    图 5  GPI推力示意图

    Figure 5.  Schematic diagram of GPI thrust

    图 6  ZEM与GNEM示意图

    Figure 6.  Schematic diagram of ZEM and GNEM

    图 7  标控弹道族

    Figure 7.  Trajectory cluster of normal effort

    图 8  纵程可达区

    Figure 8.  longitudinal reachable area

    图 9  纵向可达区拟合结果

    Figure 9.  Fitting result of longitudinal reachable area

    图 10  BP神经网络结构

    Figure 10.  Structure of BP neural network

    图 11  脉冲间隔时间及第2级关机弹道倾角的拟合结果

    Figure 11.  Fitting error results of pulse interval and flight angle of the second stage shutdown machine

    图 12  横程机动能力解析预测与数值仿真结果的对比

    Figure 12.  Comparison of analytical predictions and numerical simulation results of traverse maneuver

    图 13  基于目标横程机动可达区域覆盖的协同拦截示意图

    Figure 13.  Diagram of cooperative interception based on target's traverse maneuverable reachable area

    图 14  计算拦截弧段示意图

    Figure 14.  Calculate the schematic diagram of intercept arc

    图 15  拦截弧段计算流程

    Figure 15.  Flow of intercept arc calculation

    图 16  协同拦截策略流程

    Figure 16.  Flow of collaborative interception strategy

    图 17  目标和拦截弹的弹道(场景 1)

    Figure 17.  Target and interceptor trajectories (Case 1)

    图 18  目标和拦截弹速度曲线(场景 1)

    Figure 18.  Target and interceptor velocity (Case 1)

    图 19  目标和拦截弹的弹道(场景 2)

    Figure 19.  Target and interceptor trajectories (Case 2)

    图 20  目标和拦截弹速度曲线(场景 2)

    Figure 20.  Target and interceptor velocity (Case 2)

    图 21  目标和拦截弹的弹道(场景 3)

    Figure 21.  Target and interceptor trajectories (Case 3)

    图 22  拦截弹的攻角和侧滑角曲线(场景 3)

    Figure 22.  Interceptor AOA and sideslip angle (Case 3)

    图 23  拦截态势(场景 3)

    Figure 23.  Intercept situation (Case 3)

    图 24  目标和拦截弹的弹道(场景 4)

    Figure 24.  Target and interceptor trajectories (Case 4)

    图 25  拦截弹的攻角和侧滑角曲线(场景 4)

    Figure 25.  Interceptor AOA and sideslip angle (Case 4)

    图 26  拦截态势(场景 4)

    Figure 26.  Intercept situation (Case 4)

    表  1  目标飞行器再入初始参数

    Table  1.   Target vehicle reentry initial parameters

    ${\lambda _0}$/(°) ${H_0}$/km ${\gamma _0}$/(°) ${\alpha _0}$/(°) ${\phi _0}$/(°) ${V_0}$/(m·s−1) ${\psi _0}$/(°) ${\sigma _0}$/(°)
    0 80 0 10 40 6500 90,0,−90,−180 40
    下载: 导出CSV

    表  2  GPI质量推力参数

    Table  2.   GPI mass and thrust parameters

    级数 总质量/kg 燃料质量/kg 推力/kN 工作时间/s
    1 2000 329.75 140 6
    2 1600 180.0 60.059 8
    520.0 39.665 35
    3 700 250.0 23.423 20
    250.0 23.423 20
    下载: 导出CSV

    表  3  控制变量的上下界

    Table  3.   Upper and lower bounds of control variables

    变量范围 $ {\gamma _{2{\rm{f}}}} $/(°) ${t_{{\text{inter}}}}$/s ${t_{{\text{coast2}}}}$/s
    下界 30 40 20
    上界 40 200 150
    下载: 导出CSV

    表  4  脉冲间隔时间及第2级关机弹道倾角的拟合误差统计

    Table  4.   Fitting error statistics of pulse interval and flight angle of the second stage shutdown machine

    统计量 $ {\gamma _{2{\rm{f}}}} $/(°) ${t_{{\text{inter}}}}$/s
    最大误差 0.0894 1.0902
    平均误差 5.62×10−5 0.0076
    误差的标准差 0.0213 0.1509
    下载: 导出CSV

    表  5  单弹拦截仿真结果

    Table  5.   Simulation results of single interception

    场景 倾侧反转
    时刻/s
    发射
    时刻/s
    脉冲间隔
    时间/s
    第2脉冲
    点火时刻/s
    拦截
    时刻/s
    无末制导
    脱靶量/m
    1 500/520 82.3/75.5 653.3/665.5 824.2/830.9 601.34/637.82
    2 700 500 82.3 653.3 821.6 76142.7
    下载: 导出CSV

    表  6  多弹协同拦截仿真结果

    Table  6.   Simulation results of multi-interceptor cooperative interception

    场景倾侧
    反转
    时刻/s
    仿真结果
    拦截弹
    序号
    发射
    时刻/s
    脉冲
    间隔时间/s
    第2脉
    冲点火
    时刻/s
    拦截
    时刻/s
    无末制导
    脱靶量/m
    36601500.082.3653.3820.592935.430
    2593.8151.9816.7870.049289.68
    3593.8138.8803.6866.2551.95
    47601500.082.3653.3823.521183.95
    2593.8119.6784.4872.155.40
    3593.8137.8802.6871.7113804.54
    下载: 导出CSV
  • [1] 雷虎民, 骆长鑫, 周池军, 等. 临近空间防御作战拦截弹制导与控制关键技术综述[J]. 航空兵器, 2021, 28(2): 1-10. doi: 10.12132/ISSN.1673-5048.2021.0070

    LEI H M, LUO C X, ZHOU C J, et al. Summary of key technologies of interceptor guidance and control in near space defense operations[J]. Aero Weaponry, 2021, 28(2): 1-10(in Chinese). doi: 10.12132/ISSN.1673-5048.2021.0070
    [2] 杨阳, 李昌玺, 黄兴龙, 等. 美国高超声速武器防御举措及特点分析[J]. 飞航导弹, 2019(9): 20-24.

    YANG Y, LI C X, HUANG X L, et al. Defense measures and characteristics analysis of hypersonic weapons in the United States[J]. Aerodynamic Missile Journal, 2019(9): 20-24(in Chinese).
    [3] 赵良玉, 雍恩米, 王波兰. 反临近空间高超声速飞行器若干研究进展[J]. 宇航学报, 2020, 41(10): 1239-1250. doi: 10.3873/j.issn.1000-1328.2020.10.001

    ZHAO L Y, YONG E M, WANG B L. Some achievements on interception of near space hypersonic vehicles[J]. Journal of Astronautics, 2020, 41(10): 1239-1250(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.10.001
    [4] 赵杰, 王君, 张大元, 等. 反临近空间高超声速飞行器中末交接视角研究[J]. 飞行力学, 2015, 33(3): 253-256.

    ZHAO J, WANG J, ZHANG D Y, et al. Visual angle research for midcourse and terminal guidance hand-over of near space hypersonic vehicles[J]. Flight Dynamics, 2015, 33(3): 253-256(in Chinese).
    [5] 李爽, 江涌, 张奕群, 等. 基于虚拟目标的大气层内拦截弹中制导律研究[J]. 航天控制, 2013, 31(3): 40-44. doi: 10.3969/j.issn.1006-3242.2013.03.008

    LI S, JIANG Y, ZHANG Y Q, et al. Research on midcourse guidance law for interceptor based on virtual target[J]. Aerospace Control, 2013, 31(3): 40-44(in Chinese). doi: 10.3969/j.issn.1006-3242.2013.03.008
    [6] 张荣升, 陈万春. THAAD增程型拦截弹预测制导方法[J]. 北京航空航天大学学报, 2021, 47(4): 863-874.

    ZHANG R S, CHEN W C. Predictive guidance method of THAAD-ER interceptor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 863-874(in Chinese).
    [7] 肖翔, 杨业, 郭涛, 等. 升力式再入飞行器两种可达区域计算方法的探讨[J]. 航天控制, 2015, 33(2): 39-43. doi: 10.3969/j.issn.1006-3242.2015.02.007

    XIAO X, YANG Y, GUO T, et al. Discussion of two algorithms for generating landing footprint for lifting reentry vehicles[J]. Aerospace Control, 2015, 33(2): 39-43(in Chinese). doi: 10.3969/j.issn.1006-3242.2015.02.007
    [8] 张凯, 熊家军. 滑翔式高超声速目标可达区域计算方法[J]. 现代防御技术, 2017, 45(2): 67-73. doi: 10.3969/j.issn.1009-086x.2017.02.0010

    ZHANG K, XIONG J J. Algorithm of footprint area for gliding hypersonic target[J]. Modern Defence Technology, 2017, 45(2): 67-73(in Chinese). doi: 10.3969/j.issn.1009-086x.2017.02.0010
    [9] 吴楠, 王锋, 赵敏, 等. 高超声速滑翔再入飞行器的可达区快速预测[J]. 国防科技大学学报, 2021, 43(1): 1-6. doi: 10.11887/j.cn.202101001

    WU N, WANG F, ZHAO M, et al. Fast prediction for footprint of hypersonic glide reentry vehicle[J]. Journal of National University of Defense Technology, 2021, 43(1): 1-6(in Chinese). doi: 10.11887/j.cn.202101001
    [10] 魏明英, 崔正达, 李运迁. 多弹协同拦截综述与展望[J]. 航空学报, 2020, 41(S1): 723804.

    WEI M Y, CUI Z D, LI Y Q. Review and prospect of multi-missile cooperative interception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723804(in Chinese).
    [11] 宋俊红, 宋申民, 徐胜利. 一种拦截机动目标的多导弹协同制导律[J]. 宇航学报, 2016, 37(12): 1306-1314. doi: 10.3873/j.issn.1000-1328.2016.12.005

    SONG J H, SONG S M, XU S L. A cooperative guidance law for multiple missiles to intercept maneuvering target[J]. Journal of Astronautics, 2016, 37(12): 1306-1314(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.12.005
    [12] 赵启伦, 陈建, 董希旺, 等. 拦截高超声速目标的异类导弹协同制导律[J]. 航空学报, 2016, 37(3): 936-948.

    ZHAO Q L, CHEN J, DONG X W, et al. Cooperative guidance law for heterogeneous missiles intercepting hypersonic weapon[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 936-948(in Chinese).
    [13] 王子建. 多目标拦截器协同拦截决策方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 57-62.

    WANG Z J. Research on decision-making method of multi-target interceptor cooperative interception[D]. Harbin: Harbin Institute of Technology, 2020: 57-62(in Chinese).
    [14] 王龙. 基于区域覆盖的多飞行器协同拦截优化设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 101-110.

    WANG L. Study on optimization and design approach for mutiple flight vehicles cooperative interception based on area coverage[D]. Harbin: Harbin Institute of Technology, 2018: 101-110(in Chinese).
    [15] 于江龙, 董希旺, 李清东, 等. 拦截机动目标的分布式协同围捕制导方法[J]. 航空学报, 2022, 43(9): 325817. doi: 10.7527/j.issn.1000-6893.2022.9.hkxb202209035

    YU J L, DONG X W, LI Q D, et al. Distributed cooperative encirclement hunting guidance method for intercepting maneuvering target[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325817(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.9.hkxb202209035
    [16] PHILLIPS T H. A common aero vehicle (CAV) model, description, and employment glide [R]. Arlingtion: Schafer Corporation for AFRL and AFSPC, 2003: 1-12.
    [17] ZHANG K N, CHEN W C. Reentry vehicle constrained trajectory optimization[C]//Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011: 2231.
    [18] YU W B, CHEN W C. Entry guidance with real-time planning of reference based on analytical solutions[J]. Advances in Space Research, 2015, 55(9): 2325-2345. doi: 10.1016/j.asr.2015.02.002
    [19] 赵石磊, 陈万春, 杨良, 等. 大气层内助推段广义标控脱靶量解析制导律[J]. 系统工程与电子技术, 2023, 45(7): 2150-2157.

    ZHAO S L, CHEN W C, YANG L, et al. Analytical generalized nominal effort miss guidance law for endo-atmosphere boost phase[J]. Systems Engineering and Electronics, 2023, 45(7): 2150-2157(in Chinese).
    [20] RUMELHART D E, MCCLELLAND J L. Parallel distributed processing: Explorations in the microstructure of cognition: Psychological and biological models[M]. Cambridge: MIT Press, 1987. doi: 10.1038/323533a0
    [21] ZHAO S L, CHEN W C, YANG L. Endoatmospheric ascent optimal guidance with analytical nonlinear trajectory prediction[J]. International Journal of Aerospace Engineering, 2022, 2022: 5729335.
    [22] GLAZEBROOK K, WASHBURN A. Shoot-look-shoot: A review and extension[J]. Operations Research, 2004, 52(3): 454-463. doi: 10.1287/opre.1030.0086
    [23] PRYLUK R, SHIMA T, GOLAN O M. Shoot-shoot-look for an air defense system[J]. IEEE Systems Journal, 2016, 10(1): 151-161. doi: 10.1109/JSYST.2014.2344755
  • 加载中
图(26) / 表(6)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  95
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2023-02-10
  • 网络出版日期:  2023-03-15
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答