Cooperative interception strategy for midcourse guidance of GPI based on online prediction of reachable area
-
摘要:
针对临近空间高超声速滑翔目标防御中存在目标机动能力强、机动意图不明确的问题,提出一种基于可达区在线预测的滑翔段拦截器(GPI)中制导协同拦截策略。基于滑翔弹道解析解给出针对目标横程机动的可达区在线预测方法。利用多项式拟合和反向传播(BP)神经网络给出GPI标控弹道的纵程可达区在线预测方法,并利用弹道解析解进一步给出拦截弹的横程可达区在线预测方法。通过对目标和拦截弹可达区在线预测,引入多弹协同思想,实现拦截弹可达区对目标可达区的覆盖,完成协同拦截策略的设计。拦截仿真分析表明:所提协同拦截策略可有效应对目标的倾侧反转机动。
Abstract:To address the challenges of intercepting a hypersonic glide target in near space with significant maneuverability but ambiguous maneuver intention, this paper proposes a cooperative interception strategy for the midcourse guidance phase of a gliding phase interceptor (GPI), based on online prediction of an accessible area. First, based on the analytical solution of gliding trajectory, the online estimation method of lateral reach area is given. Next, polynomial fitting and back propagation (BP) neural network are used to offer an online strategy for GPI that predicts the area of reachable range under normal effort. The analytical solution is used to estimate the lateral reachable area. Finally, the interception arc and firing data can be determined under the concept of cooperative interception. Interception simulation and analysis verify that the cooperative interception strategy can effectively deal with the reversal maneuver of a hypersonic gliding target.
-
表 1 目标飞行器再入初始参数
Table 1. Target vehicle reentry initial parameters
${\lambda _0}$/(°) ${H_0}$/km ${\gamma _0}$/(°) ${\alpha _0}$/(°) ${\phi _0}$/(°) ${V_0}$/(m·s−1) ${\psi _0}$/(°) ${\sigma _0}$/(°) 0 80 0 10 40 6500 90,0,−90,−180 40 表 2 GPI质量推力参数
Table 2. GPI mass and thrust parameters
级数 总质量/kg 燃料质量/kg 推力/kN 工作时间/s 1 2000 329.75 140 6 2 1600 180.0 60.059 8 520.0 39.665 35 3 700 250.0 23.423 20 250.0 23.423 20 表 3 控制变量的上下界
Table 3. Upper and lower bounds of control variables
变量范围 $ {\gamma _{2{\rm{f}}}} $/(°) ${t_{{\text{inter}}}}$/s ${t_{{\text{coast2}}}}$/s 下界 30 40 20 上界 40 200 150 表 4 脉冲间隔时间及第2级关机弹道倾角的拟合误差统计
Table 4. Fitting error statistics of pulse interval and flight angle of the second stage shutdown machine
统计量 $ {\gamma _{2{\rm{f}}}} $/(°) ${t_{{\text{inter}}}}$/s 最大误差 0.0894 1.0902 平均误差 5.62×10−5 0.0076 误差的标准差 0.0213 0.1509 表 5 单弹拦截仿真结果
Table 5. Simulation results of single interception
场景 倾侧反转
时刻/s发射
时刻/s脉冲间隔
时间/s第2脉冲
点火时刻/s拦截
时刻/s无末制导
脱靶量/m1 500/520 82.3/75.5 653.3/665.5 824.2/830.9 601.34/637.82 2 700 500 82.3 653.3 821.6 76142.7 表 6 多弹协同拦截仿真结果
Table 6. Simulation results of multi-interceptor cooperative interception
场景 倾侧
反转
时刻/s仿真结果 拦截弹
序号发射
时刻/s脉冲
间隔时间/s第2脉
冲点火
时刻/s拦截
时刻/s无末制导
脱靶量/m3 660 1 500.0 82.3 653.3 820.5 92935.430 2 593.8 151.9 816.7 870.0 49289.68 3 593.8 138.8 803.6 866.2 551.95 4 760 1 500.0 82.3 653.3 823.5 21183.95 2 593.8 119.6 784.4 872.1 55.40 3 593.8 137.8 802.6 871.7 113804.54 -
[1] 雷虎民, 骆长鑫, 周池军, 等. 临近空间防御作战拦截弹制导与控制关键技术综述[J]. 航空兵器, 2021, 28(2): 1-10. doi: 10.12132/ISSN.1673-5048.2021.0070LEI H M, LUO C X, ZHOU C J, et al. Summary of key technologies of interceptor guidance and control in near space defense operations[J]. Aero Weaponry, 2021, 28(2): 1-10(in Chinese). doi: 10.12132/ISSN.1673-5048.2021.0070 [2] 杨阳, 李昌玺, 黄兴龙, 等. 美国高超声速武器防御举措及特点分析[J]. 飞航导弹, 2019(9): 20-24.YANG Y, LI C X, HUANG X L, et al. Defense measures and characteristics analysis of hypersonic weapons in the United States[J]. Aerodynamic Missile Journal, 2019(9): 20-24(in Chinese). [3] 赵良玉, 雍恩米, 王波兰. 反临近空间高超声速飞行器若干研究进展[J]. 宇航学报, 2020, 41(10): 1239-1250. doi: 10.3873/j.issn.1000-1328.2020.10.001ZHAO L Y, YONG E M, WANG B L. Some achievements on interception of near space hypersonic vehicles[J]. Journal of Astronautics, 2020, 41(10): 1239-1250(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.10.001 [4] 赵杰, 王君, 张大元, 等. 反临近空间高超声速飞行器中末交接视角研究[J]. 飞行力学, 2015, 33(3): 253-256.ZHAO J, WANG J, ZHANG D Y, et al. Visual angle research for midcourse and terminal guidance hand-over of near space hypersonic vehicles[J]. Flight Dynamics, 2015, 33(3): 253-256(in Chinese). [5] 李爽, 江涌, 张奕群, 等. 基于虚拟目标的大气层内拦截弹中制导律研究[J]. 航天控制, 2013, 31(3): 40-44. doi: 10.3969/j.issn.1006-3242.2013.03.008LI S, JIANG Y, ZHANG Y Q, et al. Research on midcourse guidance law for interceptor based on virtual target[J]. Aerospace Control, 2013, 31(3): 40-44(in Chinese). doi: 10.3969/j.issn.1006-3242.2013.03.008 [6] 张荣升, 陈万春. THAAD增程型拦截弹预测制导方法[J]. 北京航空航天大学学报, 2021, 47(4): 863-874.ZHANG R S, CHEN W C. Predictive guidance method of THAAD-ER interceptor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 863-874(in Chinese). [7] 肖翔, 杨业, 郭涛, 等. 升力式再入飞行器两种可达区域计算方法的探讨[J]. 航天控制, 2015, 33(2): 39-43. doi: 10.3969/j.issn.1006-3242.2015.02.007XIAO X, YANG Y, GUO T, et al. Discussion of two algorithms for generating landing footprint for lifting reentry vehicles[J]. Aerospace Control, 2015, 33(2): 39-43(in Chinese). doi: 10.3969/j.issn.1006-3242.2015.02.007 [8] 张凯, 熊家军. 滑翔式高超声速目标可达区域计算方法[J]. 现代防御技术, 2017, 45(2): 67-73. doi: 10.3969/j.issn.1009-086x.2017.02.0010ZHANG K, XIONG J J. Algorithm of footprint area for gliding hypersonic target[J]. Modern Defence Technology, 2017, 45(2): 67-73(in Chinese). doi: 10.3969/j.issn.1009-086x.2017.02.0010 [9] 吴楠, 王锋, 赵敏, 等. 高超声速滑翔再入飞行器的可达区快速预测[J]. 国防科技大学学报, 2021, 43(1): 1-6. doi: 10.11887/j.cn.202101001WU N, WANG F, ZHAO M, et al. Fast prediction for footprint of hypersonic glide reentry vehicle[J]. Journal of National University of Defense Technology, 2021, 43(1): 1-6(in Chinese). doi: 10.11887/j.cn.202101001 [10] 魏明英, 崔正达, 李运迁. 多弹协同拦截综述与展望[J]. 航空学报, 2020, 41(S1): 723804.WEI M Y, CUI Z D, LI Y Q. Review and prospect of multi-missile cooperative interception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723804(in Chinese). [11] 宋俊红, 宋申民, 徐胜利. 一种拦截机动目标的多导弹协同制导律[J]. 宇航学报, 2016, 37(12): 1306-1314. doi: 10.3873/j.issn.1000-1328.2016.12.005SONG J H, SONG S M, XU S L. A cooperative guidance law for multiple missiles to intercept maneuvering target[J]. Journal of Astronautics, 2016, 37(12): 1306-1314(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.12.005 [12] 赵启伦, 陈建, 董希旺, 等. 拦截高超声速目标的异类导弹协同制导律[J]. 航空学报, 2016, 37(3): 936-948.ZHAO Q L, CHEN J, DONG X W, et al. Cooperative guidance law for heterogeneous missiles intercepting hypersonic weapon[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 936-948(in Chinese). [13] 王子建. 多目标拦截器协同拦截决策方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 57-62.WANG Z J. Research on decision-making method of multi-target interceptor cooperative interception[D]. Harbin: Harbin Institute of Technology, 2020: 57-62(in Chinese). [14] 王龙. 基于区域覆盖的多飞行器协同拦截优化设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 101-110.WANG L. Study on optimization and design approach for mutiple flight vehicles cooperative interception based on area coverage[D]. Harbin: Harbin Institute of Technology, 2018: 101-110(in Chinese). [15] 于江龙, 董希旺, 李清东, 等. 拦截机动目标的分布式协同围捕制导方法[J]. 航空学报, 2022, 43(9): 325817. doi: 10.7527/j.issn.1000-6893.2022.9.hkxb202209035YU J L, DONG X W, LI Q D, et al. Distributed cooperative encirclement hunting guidance method for intercepting maneuvering target[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325817(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.9.hkxb202209035 [16] PHILLIPS T H. A common aero vehicle (CAV) model, description, and employment glide [R]. Arlingtion: Schafer Corporation for AFRL and AFSPC, 2003: 1-12. [17] ZHANG K N, CHEN W C. Reentry vehicle constrained trajectory optimization[C]//Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011: 2231. [18] YU W B, CHEN W C. Entry guidance with real-time planning of reference based on analytical solutions[J]. Advances in Space Research, 2015, 55(9): 2325-2345. doi: 10.1016/j.asr.2015.02.002 [19] 赵石磊, 陈万春, 杨良, 等. 大气层内助推段广义标控脱靶量解析制导律[J]. 系统工程与电子技术, 2023, 45(7): 2150-2157.ZHAO S L, CHEN W C, YANG L, et al. Analytical generalized nominal effort miss guidance law for endo-atmosphere boost phase[J]. Systems Engineering and Electronics, 2023, 45(7): 2150-2157(in Chinese). [20] RUMELHART D E, MCCLELLAND J L. Parallel distributed processing: Explorations in the microstructure of cognition: Psychological and biological models[M]. Cambridge: MIT Press, 1987. doi: 10.1038/323533a0 [21] ZHAO S L, CHEN W C, YANG L. Endoatmospheric ascent optimal guidance with analytical nonlinear trajectory prediction[J]. International Journal of Aerospace Engineering, 2022, 2022: 5729335. [22] GLAZEBROOK K, WASHBURN A. Shoot-look-shoot: A review and extension[J]. Operations Research, 2004, 52(3): 454-463. doi: 10.1287/opre.1030.0086 [23] PRYLUK R, SHIMA T, GOLAN O M. Shoot-shoot-look for an air defense system[J]. IEEE Systems Journal, 2016, 10(1): 151-161. doi: 10.1109/JSYST.2014.2344755