-
摘要:
激波与湍流边界层相互干扰(SWTBLI)现象可诱导形成复杂的流场结构和气动力热分布特性,其干扰机制和影响机理至今仍未被充分掌握。为分析超/高超声速SWTBLI流动的机理,开展了来流马赫数为3、5、11条件下压缩拐角流动的直接数值模拟(DNS)研究。结果显示,SWTBLI使干扰区内的速度、压强等物理量的脉动显著增强,且增强幅值随来流马赫数升高而增大;同时,上游边界层中的温度、压强等物理量的脉动也随来流马赫数的增大而增强。在SWTBLI作用下,流动的可压缩效应明显增强,干扰区内压力膨胀项和膨胀耗散项不再可忽略。在高超声速条件下,上游边界层中的压力膨胀项和膨胀耗散项也比较重要。此外,SWTBLI诱导的壁面压强平均值和脉动均方根值的分布存在共性。在所有来流马赫数下,干扰区内的壁面压强脉动相比上游边界层均显著增强,并形成明显的峰值。流动发生显著分离时,将分别形成位于平均分离点和再附点附近的壁面压强脉动峰值。
-
关键词:
- 激波与湍流边界层相互干扰 /
- 高超声速流动 /
- 可压缩湍流 /
- 直接数值模拟 /
- 分离流
Abstract:The shock-wave/turbulent-boundary-layer interaction (SWTBLI) phenomenon will result in complex flow structures. Direct numerical Simulation (DNS) studies of compressible corner flow under freestream mach number 3, 5, 11 conditions have been carried out to further explore supersonic/hypersonic SWTBLI flow mechanisms. It is found that SWTBLI causes a significant increase of turbulence fluctuation in the interaction zone, and such influence is further enhanced with the increase of freestream Mach number. Higher Mach numbers also make variations in pressure and temperature in the upstream turbulent boundary layer more noticeable. In addition, the compressible effect is also significantly enhanced by SWTBLI. Terms associated with compressible effects, including the pressure dilatation and dissipation terms, are no longer insignificant in the interaction zone and the upstream boundary layer (in the case of hypersonic travel). Furthermore, commonalities of SWTBLI-induced mean and RMS wall pressure distribution are observed. Both mean and RMS wall pressure increase rapidly through the interaction zone until reaching their peak values. Distribution of RMS wall pressure along streamwise direction shows two peak value points when a large separation zone forms, which are closely related to the mean separation point and mean reattachment point, respectively.
-
表 1 边界层参数计算和实验结果对比
Table 1. Comparison of boundary layer parameters between CFD and experimental results
变量 实验测量值 DNS计算结果 Maδ 2.9 2.9 Reθ 2400 2450 δ/mm 6.7 6.7 δ*/mm 2.36 2.6 θ/mm 0.43 0.48 H=δ*/θ 5.49 5.41 Cf 2.17×103 2.20×103 uτ 32.9 30 表 2 不同DNS算例的计算域和网格尺寸
Table 2. Computation domain and grid size of different DNS cases
Ma∞ 流向计算
域长度避面法向计算
域长度展向计算
域长度Δx+ Δz+ Δy1 + 3 27δ 6δ 2δ 5~7 6 0.3 5 12δ 3δ 2δ 5~10 8 0.15 11 40δ 4δ 2δ 5~10 8 0.3 表 3 不同算例平均分离区长度和平均分离点、平均再附点位置
Table 3. Length of separation zone and position of average separation and reattachment point
Ma∞ 平均分离点
位置 (x*/δ)平均再附点
位置 (x*/δ)平均分离区
长度 (x*/δ)3 −2.7 0.8 3.5 5 −1.7 0.9 2.6 11 −0.6 0.2 0.8 -
[1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal, 2001, 39(8): 1517-1531. doi: 10.2514/2.1476 [2] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46: 469-492. doi: 10.1146/annurev-fluid-010313-141346 [3] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. doi: 10.1016/j.paerosci.2014.09.002 [4] 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917.FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917(in Chinese). [5] HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122. doi: 10.1016/j.actaastro.2020.05.001 [6] 栗继伟, 卢盼, 汪球, 等. 激波风洞7°尖锥边界层转捩实验研究[J]. 北京航空航天大学学报, 2020, 46(11): 2087-2093.LI J W, LU P, WANG Q, et al. Experimental study of boundary-layer transition on a 7° sharp cone in shock tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2087-2093(in Chinese). [7] 余华峰, 刘宏康, 陈树生, 等. 类X-51A飞行器非定常湍流精细模拟[J]. 北京航空航天大学学报, 2019, 45(3): 624-632.YU H F, LIU H K, CHEN S S, et al. High-resolution unsteady turbulence simulation of an X-51A-like aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 624-632 (in Chinese). [8] PRIEBE S, WU M, MARTÍN M P. Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction[J]. AIAA Journal, 2009, 47(5): 1173-1185. doi: 10.2514/1.38821 [9] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699: 1-49. doi: 10.1017/jfm.2011.560 [10] 童福林, 董思卫, 段俊亦, 等. 激波/湍流边界层干扰分离泡直接数值模拟[J]. 航空学报, 2022, 43(7): 125437. doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207010TONG F L, DONG S W, DUAN J Y, et al. Direct numerical simulation of separation bubble in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125437(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207010 [11] ZHU X K, YU C P, TONG F L, et al. Numerical study on wall temperature effects on shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 2017, 55(1): 131-140. doi: 10.2514/1.J054939 [12] KNUTSON A, SIDHARTH G S, CANDLER G V. Direct numerical simulation of Mach 6 flow over a cone with a highly swept fin[C]// Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 0379. [13] FANG J, YAO Y, ZHELTOVODOV A A, et al. Investigation of three-dimensional shock wave/turbulent-boundary-layer interaction initiated by a single fin[J]. AIAA Journal, 2017, 55(2): 509-523. doi: 10.2514/1.J055283 [14] HILDEBRAND N, DWIVEDI A, NICHOLS J W, et al. Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92[J]. Physical Review Fluids, 2018, 3: 013906. doi: 10.1103/PhysRevFluids.3.013906 [15] RINGUETTE M, WU M, MARTÍN M P. Low Reynolds number effects in a Mach 3 shock/turbulent-boundary-layer interaction[J]. AIAA Journal, 2008, 46(7): 1883-1886. doi: 10.2514/1.36213 [16] MO F, SU W, GAO Z X, et al. Numerical investigations of the slot blowing technique on the hypersonic vehicle for drag reduction[J]. Aerospace Science and Technology, 2022, 121: 107372. doi: 10.1016/j.ast.2022.107372 [17] ELENA M, LACHARME J, GAVIGLIO J. Comparison of hot-wire and laser Doppler anemometry methods in supersonic turbulent boundary layers[R]. New York: American Society of Mechanical Engineers, 1985: 151-157. [18] ERENGIL M E, DOLLING D S. Correlation of separation shock motion with pressure fluctuations inthe incoming boundary layer[J]. AIAA Journal, 1991, 29(11): 1868-1877. doi: 10.2514/3.10812 [19] DUPONT P, PIPONNIAU S, SIDORENKO A, et al. Investigation by particle image velocimetry measurements of oblique shock reflection with separation[J]. AIAA Journal, 2008, 46(6): 1365-1370. doi: 10.2514/1.30154 [20] HUANG P G, COLEMAN G N, BRADSHAW P. Compressible turbulent channel flows: DNS results and modelling[J]. Journal of Fluid Mechanics, 1995, 305: 185-218. doi: 10.1017/S0022112095004599