留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波与湍流边界层干扰流动的马赫数效应

吴正园 高振勋 陈新民 蒋崇文 李椿萱 葛航

吴正园,高振勋,陈新民,等. 激波与湍流边界层干扰流动的马赫数效应[J]. 北京航空航天大学学报,2024,50(11):3484-3494 doi: 10.13700/j.bh.1001-5965.2022.0857
引用本文: 吴正园,高振勋,陈新民,等. 激波与湍流边界层干扰流动的马赫数效应[J]. 北京航空航天大学学报,2024,50(11):3484-3494 doi: 10.13700/j.bh.1001-5965.2022.0857
WU Z Y,GAO Z X,CHEN X M,et al. Mach number effect in shock-wave/turbulent-boundary-layer interaction flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3484-3494 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0857
Citation: WU Z Y,GAO Z X,CHEN X M,et al. Mach number effect in shock-wave/turbulent-boundary-layer interaction flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3484-3494 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0857

激波与湍流边界层干扰流动的马赫数效应

doi: 10.13700/j.bh.1001-5965.2022.0857
基金项目: 国家自然科学基金(11872094);国家自然科学基金创新研究群体项目(11721202)
详细信息
    通讯作者:

    E-mail:gaozhenxun@buaa.edu.cn

  • 中图分类号: V221+.3;O355

Mach number effect in shock-wave/turbulent-boundary-layer interaction flow

Funds: National Natural Science Foundation of China (11872094); Science Fund for Creative Research Groups of the National Natural Science Foundation of China (11721202)
More Information
  • 摘要:

    激波与湍流边界层相互干扰(SWTBLI)现象可诱导形成复杂的流场结构和气动力热分布特性,其干扰机制和影响机理至今仍未被充分掌握。为分析超/高超声速SWTBLI流动的机理,开展了来流马赫数为3、5、11条件下压缩拐角流动的直接数值模拟(DNS)研究。结果显示,SWTBLI使干扰区内的速度、压强等物理量的脉动显著增强,且增强幅值随来流马赫数升高而增大;同时,上游边界层中的温度、压强等物理量的脉动也随来流马赫数的增大而增强。在SWTBLI作用下,流动的可压缩效应明显增强,干扰区内压力膨胀项和膨胀耗散项不再可忽略。在高超声速条件下,上游边界层中的压力膨胀项和膨胀耗散项也比较重要。此外,SWTBLI诱导的壁面压强平均值和脉动均方根值的分布存在共性。在所有来流马赫数下,干扰区内的壁面压强脉动相比上游边界层均显著增强,并形成明显的峰值。流动发生显著分离时,将分别形成位于平均分离点和再附点附近的壁面压强脉动峰值。

     

  • 图 1  超声速压缩拐角流动实验模型和计算网格

    Figure 1.  Experimental models and computational grids for supersonic compression corner flow

    图 2  上游边界层速度结果对比

    Figure 2.  Comparison of upstream boundary layer velocity results

    图 3  Ma=3算例平均密度梯度云图

    Figure 3.  Density gradient cloud for the Ma=3 case

    图 4  Ma=3算例平均壁面压强结果

    Figure 4.  Mean wall pressure results of Ma=3 case

    图 5  Ma=5算例平均壁面压强结果

    Figure 5.  Mean wall pressure results of Ma=5 case

    图 6  Ma=5算例压强等值面云图

    Figure 6.  Iso-surface contour of pressure of Ma=5 case

    图 7  Ma=11算例瞬时温度云图

    Figure 7.  Instantaneous temperature gradient contour of Ma=11 case

    图 8  分离泡和分离激波结构

    Figure 8.  Separation bubble and separation shock wave structures

    图 9  不同流场区域流向脉动速度分布结果

    Figure 9.  Distributions of fluctuation velocity in different flow regions

    图 10  上游边界层脉动速度结果对比

    Figure 10.  Comparison of fluctuation velocity in upstream boundary layer

    图 11  上游边界层温度脉动结果对比

    Figure 11.  Comparison of fluctuation temperature in upstream boundary layer

    图 12  上游边界层密度脉动结果对比

    Figure 12.  Comparison of RMS density profile in upstream boundary layer

    图 13  不同来流马赫数下壁面压强脉动结果对比

    Figure 13.  Comparison of fluctuation wall pressure results under different Mach numbers

    图 14  不同流场区域可压缩效应项分布

    Figure 14.  Distribution of compressible effect terms in different flow field regions

    图 15  Ma=5算例可压缩效应相关项结果

    Figure 15.  Compressible effect terms of Ma=5 case

    图 16  Ma=11算例可压缩效应相关项结果

    Figure 16.  Compressible effect terms of Ma=11 case

    表  1  边界层参数计算和实验结果对比

    Table  1.   Comparison of boundary layer parameters between CFD and experimental results

    变量 实验测量值 DNS计算结果
    Maδ 2.9 2.9
    Reθ 2400 2450
    δ/mm 6.7 6.7
    δ*/mm 2.36 2.6
    θ/mm 0.43 0.48
    H=δ* 5.49 5.41
    Cf 2.17×103 2.20×103
    uτ 32.9 30
    下载: 导出CSV

    表  2  不同DNS算例的计算域和网格尺寸

    Table  2.   Computation domain and grid size of different DNS cases

    Ma 流向计算
    域长度
    避面法向计算
    域长度
    展向计算
    域长度
    Δx+ Δz+ Δy1 +
    3 27δ 6δ 2δ 5~7 6 0.3
    5 12δ 3δ 2δ 5~10 8 0.15
    11 40δ 4δ 2δ 5~10 8 0.3
    下载: 导出CSV

    表  3  不同算例平均分离区长度和平均分离点、平均再附点位置

    Table  3.   Length of separation zone and position of average separation and reattachment point

    Ma 平均分离点
    位置 (x*/δ)
    平均再附点
    位置 (x*/δ)
    平均分离区
    长度 (x*/δ)
    3 −2.7 0.8 3.5
    5 −1.7 0.9 2.6
    11 −0.6 0.2 0.8
    下载: 导出CSV
  • [1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal, 2001, 39(8): 1517-1531. doi: 10.2514/2.1476
    [2] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46: 469-492. doi: 10.1146/annurev-fluid-010313-141346
    [3] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. doi: 10.1016/j.paerosci.2014.09.002
    [4] 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917.

    FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917(in Chinese).
    [5] HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122. doi: 10.1016/j.actaastro.2020.05.001
    [6] 栗继伟, 卢盼, 汪球, 等. 激波风洞7°尖锥边界层转捩实验研究[J]. 北京航空航天大学学报, 2020, 46(11): 2087-2093.

    LI J W, LU P, WANG Q, et al. Experimental study of boundary-layer transition on a 7° sharp cone in shock tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2087-2093(in Chinese).
    [7] 余华峰, 刘宏康, 陈树生, 等. 类X-51A飞行器非定常湍流精细模拟[J]. 北京航空航天大学学报, 2019, 45(3): 624-632.

    YU H F, LIU H K, CHEN S S, et al. High-resolution unsteady turbulence simulation of an X-51A-like aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 624-632 (in Chinese).
    [8] PRIEBE S, WU M, MARTÍN M P. Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction[J]. AIAA Journal, 2009, 47(5): 1173-1185. doi: 10.2514/1.38821
    [9] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699: 1-49. doi: 10.1017/jfm.2011.560
    [10] 童福林, 董思卫, 段俊亦, 等. 激波/湍流边界层干扰分离泡直接数值模拟[J]. 航空学报, 2022, 43(7): 125437. doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207010

    TONG F L, DONG S W, DUAN J Y, et al. Direct numerical simulation of separation bubble in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125437(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207010
    [11] ZHU X K, YU C P, TONG F L, et al. Numerical study on wall temperature effects on shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 2017, 55(1): 131-140. doi: 10.2514/1.J054939
    [12] KNUTSON A, SIDHARTH G S, CANDLER G V. Direct numerical simulation of Mach 6 flow over a cone with a highly swept fin[C]// Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 0379.
    [13] FANG J, YAO Y, ZHELTOVODOV A A, et al. Investigation of three-dimensional shock wave/turbulent-boundary-layer interaction initiated by a single fin[J]. AIAA Journal, 2017, 55(2): 509-523. doi: 10.2514/1.J055283
    [14] HILDEBRAND N, DWIVEDI A, NICHOLS J W, et al. Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92[J]. Physical Review Fluids, 2018, 3: 013906. doi: 10.1103/PhysRevFluids.3.013906
    [15] RINGUETTE M, WU M, MARTÍN M P. Low Reynolds number effects in a Mach 3 shock/turbulent-boundary-layer interaction[J]. AIAA Journal, 2008, 46(7): 1883-1886. doi: 10.2514/1.36213
    [16] MO F, SU W, GAO Z X, et al. Numerical investigations of the slot blowing technique on the hypersonic vehicle for drag reduction[J]. Aerospace Science and Technology, 2022, 121: 107372. doi: 10.1016/j.ast.2022.107372
    [17] ELENA M, LACHARME J, GAVIGLIO J. Comparison of hot-wire and laser Doppler anemometry methods in supersonic turbulent boundary layers[R]. New York: American Society of Mechanical Engineers, 1985: 151-157.
    [18] ERENGIL M E, DOLLING D S. Correlation of separation shock motion with pressure fluctuations inthe incoming boundary layer[J]. AIAA Journal, 1991, 29(11): 1868-1877. doi: 10.2514/3.10812
    [19] DUPONT P, PIPONNIAU S, SIDORENKO A, et al. Investigation by particle image velocimetry measurements of oblique shock reflection with separation[J]. AIAA Journal, 2008, 46(6): 1365-1370. doi: 10.2514/1.30154
    [20] HUANG P G, COLEMAN G N, BRADSHAW P. Compressible turbulent channel flows: DNS results and modelling[J]. Journal of Fluid Mechanics, 1995, 305: 185-218. doi: 10.1017/S0022112095004599
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  119
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-16
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答