留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信号变分分解的无线电引信抗干扰方法

蔡鑫 陈齐乐 孔志杰 乔彩霞 郝新红

蔡鑫,陈齐乐,孔志杰,等. 基于信号变分分解的无线电引信抗干扰方法[J]. 北京航空航天大学学报,2024,50(11):3587-3594 doi: 10.13700/j.bh.1001-5965.2022.0860
引用本文: 蔡鑫,陈齐乐,孔志杰,等. 基于信号变分分解的无线电引信抗干扰方法[J]. 北京航空航天大学学报,2024,50(11):3587-3594 doi: 10.13700/j.bh.1001-5965.2022.0860
CAI X,CHEN Q L,KONG Z J,et al. Anti-jamming method for radio fuzes based on signal variational decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3587-3594 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0860
Citation: CAI X,CHEN Q L,KONG Z J,et al. Anti-jamming method for radio fuzes based on signal variational decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3587-3594 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0860

基于信号变分分解的无线电引信抗干扰方法

doi: 10.13700/j.bh.1001-5965.2022.0860
基金项目: 国家自然科学基金(61871414)
详细信息
    通讯作者:

    E-mail:haoxinhong@bit.edu.cn

  • 中图分类号: TJ43+4.1

Anti-jamming method for radio fuzes based on signal variational decomposition

Funds: National Natural Science Foundation of China (61871414)
More Information
  • 摘要:

    脉冲多普勒引信在受到扫频式干扰时,引信接收机信道被干扰信号饱和从而导致引信出现早炸或瞎火。脉冲多普勒引信通过波形设计及多维度特征识别可以避免因干扰信号而错误启动,但如何在扫频式干扰压制下检测真实目标仍是一个难题。针对上述问题,建立了扫频式干扰作用下脉冲多普勒引信中频信号模型,并提出了基于信号变分分解的引信抗扫频式干扰方法。所提方法利用全变分正则化将中频信号分解为脉冲、低频正弦波和高频噪声3个分量,保留并处理对应目标回波信号的脉冲分量即可检测真实目标。通过仿真验证了方法的有效性,结果表明:所提方法在0~20 dB的干信比条件下仍能有效分离目标回波及干扰信号,大大提高了脉冲多普勒引信在扫频式干扰作用下的目标检测能力。

     

  • 图 1  本文方法总体方案

    Figure 1.  General scheme of proposed method

    图 2  信号变分分解算法流程

    Figure 2.  Flow chart of signal variational decomposition algorithm

    图 3  基于非凸稀疏增强正则项的分离结果及其局部方法示意

    Figure 3.  Detection results based on non-convex sparse enhanced regularization

    图 4  负索伯列夫空间投影示意

    Figure 4.  Schematic diagram of negative Sobolev space projection

    图 5  引信中频信号及变分分解算法仿真结果

    Figure 5.  Intermediate frequency signal of fuze and simulation results of signal variational decomposition algorithm

    图 6  干信比为10 dB条件下算法仿真结果

    Figure 6.  Algorithm simulation results under jamming signal ratio of 10 dB

    图 7  干信比为20 dB条件下算法仿真结果

    Figure 7.  Algorithm simulation results under under jamming signal ratio of 20 dB

    图 8  引信探测性能仿真结果

    Figure 8.  Simulation results of fuze detection performance

    表  1  脉冲多普勒引信及干扰机参数

    Table  1.   Simulation parameters of pulse doppler fuze and jammer parameters

    载波频率/MHz 采样频率/GHz 采样时间/μs 脉宽/ns 脉冲周期/μs 扫频起始频率/MHz 扫描带宽/MHz 扫描点数 驻留时间/μs 干信比/dB
    200
    2
    11
    50
    1
    190
    20
    10
    1
    0
    下载: 导出CSV
  • [1] 梁棠文, 李玉清, 蒲开忠, 等. 防空导弹引信设计及仿真技术[M]. 北京: 宇航出版社, 1995: 199-250.

    LIANG T W, LI Y Q, PU K Z, et al. Design and simulation technology of fuze for air defense missile[M]. Beijing: China Astronautic Publishing House, 1995: 199-250(in Chinese).
    [2] 崔占忠, 宋世和, 徐立新. 近炸引信原理[M]. 第3版. 北京: 北京理工大学出版社, 2009: 112-119.

    CUI Z Z, SONG S H, XU L X. Principle of proximity fuze[M]. 3rd ed. Beijing: Beijing Insititute of Technology Press, 2009: 112-119(in Chinese).
    [3] 赵惠昌. 无线电引信设计原理与方法[M]. 北京: 国防工业出版社, 2012: 153-162.

    ZHAO H C. Fundamentals and methodology of radio fuze[M]. Beijing: National Defense Industry Press, 2012: 153-162(in Chinese).
    [4] ANDREW D, WILLIAM O. ALQ-218(V)(ICAP III)[J]. Electronic Warfare Forecast, 2007(4): 24-29.
    [5] 张旭东, 郑世举, 余德瑛. 国外无线电引信干扰机的发展状况[J]. 制导与引信, 2004, 25(4): 22-25. doi: 10.3969/j.issn.1671-0576.2004.04.006

    ZHANG X D, ZHENG S J, YU D Y. The development of radio fuze jammer abroad[J]. Guidance & Fuze, 2004, 25(4): 22-25(in Chinese). doi: 10.3969/j.issn.1671-0576.2004.04.006
    [6] 谭显裕. 国外机载电子干扰吊舱的现状及发展[J]. 现代防御技术, 2004, 32(2): 66-72. doi: 10.3969/j.issn.1009-086X.2004.02.014

    TAN X Y. Current situation and development about airborne electronic jamming pod abroad[J]. Modern Defence Technology, 2004, 32(2): 66-72(in Chinese). doi: 10.3969/j.issn.1009-086X.2004.02.014
    [7] 刘少坤, 闫晓鹏, 栗苹, 等. 脉冲多普勒引信抗周期调制干扰性能研究[J]. 北京航空航天大学学报, 2018, 44(5): 1018-1025.

    LIU S K, YAN X P, LI P, et al. Anti-periodic modulation jamming performance of pulse Doppler fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1018-1025(in Chinese).
    [8] 李泽, 栗苹, 郝新红, 等. 脉冲多普勒引信抗有源噪声干扰性能研究[J]. 兵工学报, 2015, 36(6): 1001-1008. doi: 10.3969/j.issn.1000-1093.2015.06.006

    LI Z, LI P, HAO X H, et al. Anti-active noise jamming performance of pulse Doppler fuze[J]. Acta Armamentarii, 2015, 36(6): 1001-1008(in Chinese). doi: 10.3969/j.issn.1000-1093.2015.06.006
    [9] 于洪海, 闫晓鹏, 贾瑞丽, 等. M序列伪码调相脉冲多普勒引信抗干扰性能研究[J]. 兵工学报, 2020, 41(3): 417-425. doi: 10.3969/j.issn.1000-1093.2020.03.001

    YU H H, YAN X P, JIA R L, et al. Research on anti-jamming performance of M-sequence pseudo-random code phase modulation pulse Doppler fuze[J]. Acta Armamentarii, 2020, 41(3): 417-425(in Chinese). doi: 10.3969/j.issn.1000-1093.2020.03.001
    [10] DAI J, HAO X H, LI Z, et al. Adaptive target and jamming recognition for the pulse Doppler radar fuze based on a time-frequency joint feature and an online-updated naive Bayesian classifier with minimal risk[J]. Defence Technology, 2022, 18(3): 457-466. doi: 10.1016/j.dt.2021.02.008
    [11] 代健, 李泽, 郝新红, 等. 基于目标联合特征提取的脉冲多普勒引信抗干扰方法[J]. 兵工学报, 2019, 40(2): 225-233.

    DAI J, LI Z, HAO X H, et al. Anti-jamming method for pulse Doppler fuze based on joint feature extraction of target signal[J]. Acta Armamentarii, 2019, 40(2): 225-233(in Chinese).
    [12] 陈齐乐, 郝新红, 闫晓鹏, 等. 基于谐波系数幅值平均的复合调制引信抗扫频式干扰方法[J]. 北京航空航天大学学报, 2020, 46(7): 1317-1324.

    CHEN Q L, HAO X H, YAN X P, et al. Anti sweep jamming method of hybrid modulation fuze based on harmonic coefficient amplitude averaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1317-1324(in Chinese).
    [13] DAUBECHIES I, LU J F, WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261. doi: 10.1016/j.acha.2010.08.002
    [14] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A, 1998, 454(1971): 903-998. doi: 10.1098/rspa.1998.0193
    [15] CONDAT L. A direct algorithm for 1-D total variation denoising[J]. IEEE Signal Processing Letters, 2013, 20(11): 1054-1057. doi: 10.1109/LSP.2013.2278339
    [16] SELESNICK I, LANZA A, MORIGI S, et al. Non-convex total variation regularization for convex denoising of signals[J]. Journal of Mathematical Imaging and Vision, 2020, 62(6): 825-841.
    [17] CICONE A. Iterative filtering as a direct method for the decomposition of nonstationary signals[J]. Numerical Algorithms, 2020, 85(3): 811-827. doi: 10.1007/s11075-019-00838-z
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  103
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2022-11-28
  • 网络出版日期:  2023-01-05
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答