留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横风环境下方形建筑迎风面雨滴收集率特性分析

许晨豪 皮思源 胡姝瑶 蒋崇文 李椿萱

许晨豪,皮思源,胡姝瑶,等. 横风环境下方形建筑迎风面雨滴收集率特性分析[J]. 北京航空航天大学学报,2024,50(11):3507-3520 doi: 10.13700/j.bh.1001-5965.2022.0862
引用本文: 许晨豪,皮思源,胡姝瑶,等. 横风环境下方形建筑迎风面雨滴收集率特性分析[J]. 北京航空航天大学学报,2024,50(11):3507-3520 doi: 10.13700/j.bh.1001-5965.2022.0862
XU C H,PI S Y,HU S Y,et al. Analysis of catch ratio distribution on windward facade of a cubic building under a crosswind environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3507-3520 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0862
Citation: XU C H,PI S Y,HU S Y,et al. Analysis of catch ratio distribution on windward facade of a cubic building under a crosswind environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3507-3520 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0862

横风环境下方形建筑迎风面雨滴收集率特性分析

doi: 10.13700/j.bh.1001-5965.2022.0862
基金项目: 国家自然科学基金(U20B2006,11972061,11872094)
详细信息
    通讯作者:

    E-mail:cwjiang@buaa.edu.cn

  • 中图分类号: O359.1

Analysis of catch ratio distribution on windward facade of a cubic building under a crosswind environment

Funds: National Natural Science Foundation of China (U20B2006,11972061,11872094)
More Information
  • 摘要:

    现有建筑风驱雨研究主要关注不同环境和建筑外形条件下,建筑表面风驱雨量的分布结果,但缺乏对风驱雨量分布产生原因的分析。利用有限区域计算方法,对典型条件下方形建筑迎风面收集率分布进行计算,分析了雨滴轨迹包络区域的变化规律,说明了收集率分布的产生原因。结果表明,从轨迹起点平面至终点平面,轨迹包络区域存在拉伸和扭转2种效应。在风向角为0°、参考风速为10 m/s时,高度和宽度方向拉伸率均呈现“上小下大”、“两侧小中间大”的特点。高度方向边界扭转角呈现从中间到两侧逐渐增大的趋势,宽度方向边界扭转角呈现从角点到中间区域逐渐减小的趋势。随参考风速增大,高度方向拉伸率由正变负,宽度方向拉伸率逐渐减小,高度方向扭转角在靠近地面区域逐渐增大、在建筑上部逐渐减小,宽度方向扭转角在靠近建筑顶部区域逐渐增大、在建筑下部逐渐减小。风向角为30°时,从上风侧到下风侧,高度方向拉伸率、高度和宽度边界扭转角均逐渐增大,宽度方向拉伸率则从两侧到中间逐渐增大。研究结果为分析建筑外形对收集率分布的影响和建筑防雨结构设计提供了进一步的理论依据。

     

  • 图 1  有限区域计算方法计算流程

    Figure 1.  Procedure of finite panel method

    图 2  计算模型及来流条件示意图

    Figure 2.  Schematic diagram of computational model and freestream condition

    图 3  不同网格所得建筑对称面压力系数分布对比

    Figure 3.  Comparison of pressure coefficient distribution on symmetric plane of building via different grids

    图 4  方形建筑对称面速度云图及流线

    Figure 4.  Contour of velocity and streamlines in symmetry plane of cubic building

    图 5  方形建筑周围典型雨滴轨迹

    Figure 5.  Typical raindrop trajectories around cubic building

    图 6  方形建筑迎风面收集率分布

    Figure 6.  Catch ratio distribution on windward facade of cubic building

    图 7  不同直径雨滴特定收集率分布

    Figure 7.  Specific catch ratio distribution of raindrops with different diameters

    图 8  顶部角点周围起点及终点包络区域变化情况

    Figure 8.  Transformation of initial envelop region and terminated envelop region around corner on the top

    图 9  底部中点周围起点及终点包络区域变化情况

    Figure 9.  Transformation of initial envelop region and terminated envelop region around the middle point on the bottom

    图 10  拉伸率及扭转角示意图

    Figure 10.  Schematic diagram of stretching rate and distortion angle

    图 11  高度方向拉伸率分布

    Figure 11.  Distribution of stretching rate along the height direction

    图 12  宽度方向拉伸率分布

    Figure 12.  Distribution of stretching rate along the spanwise direction

    图 13  高度方向边界扭转角分布

    Figure 13.  Distribution of distortion angle of boundaries along the height direction

    图 14  宽度方向边界扭转角分布

    Figure 14.  Distribution of distortion angle of boundaries along the spanwise direction

    图 15  不同风速下顶部角点周围起点及终点包络区域变化情况

    Figure 15.  Transformation of initial envelop region and terminated envelop region around corner on the top under various wind speed

    图 16  不同风速下底部中点周围起点及终点包络区域变化情况

    Figure 16.  Transformation of initial envelop region and terminated envelop region around the middle point on the bottom under various wind speed

    图 17  不同风速下高度方向拉伸率分布

    Figure 17.  Distribution of stretching rate along the height direction under various wind speed

    图 18  不同风速下宽度方向拉伸率分布

    Figure 18.  Distribution of stretching rate along the spanwise direction under various wind speed

    图 19  不同风速下高度方向边界扭转角分布

    Figure 19.  Distribution of distortion angle of boundaries along the height direction under various wind speed

    图 20  不同风速下宽度方向边界扭转角分布

    Figure 20.  Distribution of distortion angle of boundaries along the spanwise direction under various wind speed

    图 21  风向角为30°、参考风速为10 m/s时顶部角点和底部中点周围起点及终点包络区域变化情况

    Figure 21.  Transformation of initial envelop region and terminated envelop region around corner on the top and the middle point on the bottom when a wind angle of 30° and a reference wind speed of 10 m/s

    图 22  风向角为30°、参考风速为10 m/s时拉伸率和扭转角分布云图

    Figure 22.  Distribution of stretching rate and distortion angle at wind angle 30° and reference wind speed 10m/s

  • [1] GHOLAMALIPOUR P, GE H, STATHOPOULOS T. Wind-driven rain (WDR) loading on building facades: A state-of-the-art review[J]. Building and Environment, 2022, 221: 109314. doi: 10.1016/j.buildenv.2022.109314
    [2] BLOCKEN B, CARMELIET J. A review of wind-driven rain research in building science[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(13): 1079-1130. doi: 10.1016/j.jweia.2004.06.003
    [3] LUO Y, YIN B T, PENG X Q, et al. Wind-rain erosion of Fujian Tulou Hakka Earth Buildings[J]. Sustainable Cities and Society, 2019, 50: 101666. doi: 10.1016/j.scs.2019.101666
    [4] BLOCKEN B, CARMELIET J. Spatial and temporal distribution of driving rain on a low-rise building[J]. Wind and Structures, 2002, 5(5): 441-462. doi: 10.12989/was.2002.5.5.441
    [5] CHOI E C C. Simulation of wind-driven-rain around a building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46: 721-729.
    [6] CHOI E C C. Determination of wind-driven-rain intensity on building faces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51(1): 55-69. doi: 10.1016/0167-6105(94)90077-9
    [7] BLOCKEN B, CARMELIET J. On the validity of the cosine projection in wind-driven rain calculations on buildings[J]. Building and Environment, 2006, 41(9): 1182-1189. doi: 10.1016/j.buildenv.2005.05.002
    [8] BLOCKEN B, CARMELIET J. High-resolution wind-driven rain measurements on a low-rise building—Experimental data for model development and model validation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(12): 905-928. doi: 10.1016/j.jweia.2005.09.004
    [9] BLOCKEN B, CARMELIET J. Validation of CFD simulations of wind-driven rain on a low-rise building facade[J]. Building and Environment, 2007, 42(7): 2530-2548. doi: 10.1016/j.buildenv.2006.07.032
    [10] BRIGGEN P M, BLOCKEN B, SCHELLEN H L. Wind-driven rain on the facade of a monumental tower: Numerical simulation, full-scale validation and sensitivity analysis[J]. Building and Environment, 2009, 44(8): 1675-1690. doi: 10.1016/j.buildenv.2008.11.003
    [11] VAN HOOFF T, BLOCKEN B, VAN HARTEN M. 3D CFD simulations of wind flow and wind-driven rain shelter in sports stadia: Influence of stadium geometry[J]. Building and Environment, 2011, 46(1): 22-37. doi: 10.1016/j.buildenv.2010.06.013
    [12] KUBILAY A, DEROME D, BLOCKEN B, et al. Wind-driven rain on two parallel wide buildings: Field measurements and CFD simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 146: 11-28. doi: 10.1016/j.jweia.2015.07.006
    [13] WANG H, HOU X Z, DENG Y C. Numerical simulations of wind-driven rain on building facades under various oblique winds based on Eulerian multiphase model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 142: 82-92. doi: 10.1016/j.jweia.2015.02.006
    [14] JIANG C W, XU C H, GAO Z X, et al. Finite panel method for the simulation of wind-driven rain[J]. Building and Environment, 2016, 105: 358-368. doi: 10.1016/j.buildenv.2016.04.010
    [15] FERZIGER J H, PERIĆ M. Computational methods for fluid dynamics [M]. Berlin: Springer, 2002, 4-9.
    [16] MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193. doi: 10.1017/S0022112072001806
    [17] ABADIE M O, MENDES N. Numerical assessment of turbulence effect on the evaluation of wind-driven rain specific catch ratio[J]. International Communications in Heat and Mass Transfer, 2008, 35(10): 1253-1261. doi: 10.1016/j.icheatmasstransfer.2008.08.013
    [18] GUNN R, KINZER G D. The terminal velocity of fall for water droplets in stagnant air[J]. Journal of the Atmospheric Sciences, 1949, 6(4): 243-248.
  • 加载中
图(22)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  81
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2022-12-30
  • 网络出版日期:  2023-01-04
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答