留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自回归模型的机翼柔性基线在线预测方法

刘艳红 黄艳 谭浩 叶文 董希旺

刘艳红,黄艳,谭浩,等. 基于自回归模型的机翼柔性基线在线预测方法[J]. 北京航空航天大学学报,2024,50(11):3426-3433 doi: 10.13700/j.bh.1001-5965.2022.0865
引用本文: 刘艳红,黄艳,谭浩,等. 基于自回归模型的机翼柔性基线在线预测方法[J]. 北京航空航天大学学报,2024,50(11):3426-3433 doi: 10.13700/j.bh.1001-5965.2022.0865
LIU Y H,HUANG Y,TAN H,et al. On-line prediction method of wing flexible baseline based on autoregressive model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3426-3433 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0865
Citation: LIU Y H,HUANG Y,TAN H,et al. On-line prediction method of wing flexible baseline based on autoregressive model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3426-3433 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0865

基于自回归模型的机翼柔性基线在线预测方法

doi: 10.13700/j.bh.1001-5965.2022.0865
基金项目: 国家自然科学基金(61901431);国家市场监督管理总局科技计划(S2021MK0236)
详细信息
    通讯作者:

    E-mail:huangy@bjjl.cn

  • 中图分类号: V224+.4;V221.41+1

On-line prediction method of wing flexible baseline based on autoregressive model

Funds: National Natural Science Foundation of China (61901431); Science and Technology Program of the State Administration for Market Regulation (S2021MK0236)
More Information
  • 摘要:

    机翼柔性动态形变制约分布式位置姿态系统(POS)传递对准精度的提升,光纤光栅传感器可精确测量柔性基线,然而光纤光栅传感器测量的应变转化为基线过程需要时间,这导致测量得到的基线不能实时用于传递对准。针对该问题,在光纤光栅传感器柔性基线测量的基础上,提出基于自回归模型的柔性基线在线预测方法。利用过去一段时间内实测应变值转换的基线数据来超前预测当前时刻的基线值,用于子节点实时传递对准量测匹配误差补偿,其中,模型参数可随输入实测基线数据在线递推更新,使得基线预测更加精确。在模拟机翼平台上进行振动实验,结果表明:所提方法实现了基线的精确预测,预测误差在0.051 mm之内,且具有很强的实时性。

     

  • 图 1  机翼模型的坐标系

    Figure 1.  Coordinate system of wing model

    图 2  机翼前4阶横向位移模态

    Figure 2.  The first fourth order lateral displacement mode of wing

    图 3  模型参数辨识流程

    Figure 3.  Flow of model parameter identification

    图 4  4 Hz条件下不同振幅各阶模型的AIC值变化

    Figure 4.  AIC change of each order model with different amplitudes under the condition of shaking frequency 4 Hz

    图 5  振幅为10 mm条件下不同频率各阶模型的AIC值变化

    Figure 5.  AIC changes of each order model with different frequencies under the condition of amplitude of 10 mm

    图 6  3阶模型基线预测

    Figure 6.  Baseline prediction of third-order model

    图 7  各阶模型基线预测效果

    Figure 7.  Baseline prediction results of each order model

    图 8  动态测量实验系统

    Figure 8.  Dynamic measurement experimental system

    图 9  不同振动频率下柔性基线变化曲线

    Figure 9.  Flexible baseline change curves under different vibration frequencies

    图 10  实测柔性基线的预测情况

    Figure 10.  Prediction of measured flexible baseline

    表  1  机翼模型关键技术参数

    Table  1.   Key technical parameters of wing model

    翼型长度/mm 翼根弦长/mm 翼尖弦长/mm 最大厚度/mm 根梢比
    2700 320 240 21 0.75
    下载: 导出CSV

    表  2  机翼抖动的前4阶模态

    Table  2.   The first fourth modes of wing flutter

    阶数抖动频率/Hz最大位移/mm模态类型
    12.217432.89横向弯曲
    211.641455.34横向弯曲
    330.860466.91横向弯曲
    434.36328.34侧向扭曲
    下载: 导出CSV

    表  3  不同模型阶数下模型参数辨识速度

    Table  3.   Identification speed of model parameter under different model orders

    模型阶数 耗时/s 模型阶数 耗时/s
    1 0.0060 11 0.0090
    3 0.0065 13 0.0108
    5 0.0073 15 0.0134
    7 0.0081 17 0.0152
    9 0.0087 19 0.0201
    下载: 导出CSV

    表  4  不同模型阶数的预测误差

    Table  4.   Single step prediction errors for model different orders

    模型阶数 单步预测误差/mm
    3 0.0060
    5 0.0056
    13 0.0037
    19 0.0040
    下载: 导出CSV

    表  5  基线预测误差

    Table  5.   Baseline prediction errors

    柔性基线采样序列 实测基线值/mm 预测基线值/mm 误差/mm
    0~200 300.448 300.499 0.051
    201~400 300.431 300.479 0.048
    401~600 300.424 300.472 0.048
    601~800 300.411 300.458 0.047
    801~1000 300.414 300.462 0.048
    下载: 导出CSV
  • [1] LIU Y H, YE W, WANG B, et al. A multi-node synchronous baseline calibration system based on vision measurement for DPOS[J]. Measurement Science and Technology, 2020, 31(3): 035005. doi: 10.1088/1361-6501/ab5466
    [2] LI J L, JIA L D, LIU G. Multi-sensor time synchronization error modeling and compensation method for distributed POS[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(11): 2637-2645.
    [3] GU B, LI J L, FANG J C, et al. Airborne distributed POS flexible baseline measurement method based on MCLS[J]. IEEE Sensors Journal, 2019, 19(6): 2087-2095. doi: 10.1109/JSEN.2018.2886582
    [4] LIU Y H, YE W, WANG B. Application of correntropy-based CDKF in transfer alignment for accuracy enhancement of airborne distributed POS[J]. IEEE Sensors Journal, 2022, 22(1): 685-694. doi: 10.1109/JSEN.2021.3129605
    [5] LIU Y H, YE W, WANG B. A flexible baseline measuring system based on optics for airborne DPOS[J]. Sensors, 2021, 21(16): 5333. doi: 10.3390/s21165333
    [6] WANG B, YE W, LIU Y H. Variational Bayesian cubature RTS smoothing for transfer alignment of DPOS[J]. IEEE Sensors Journal, 2020, 20(6): 3270-3279. doi: 10.1109/JSEN.2019.2958335
    [7] LU Z X, LI J L, FANG J C, et al. Adaptive unscented two-filter smoother applied to transfer alignment for ADPOS[J]. IEEE Sensors Journal, 2018, 18(8): 3410-3418. doi: 10.1109/JSEN.2018.2799211
    [8] GONG X L, LIU H J, FANG J C, et al. Multi-node transfer alignment based on mechanics modeling for airborne DPOS[J]. IEEE Sensors Journal, 2018, 18(2): 669-679. doi: 10.1109/JSEN.2017.2771263
    [9] LIU Y H, NING X L, LI J L, et al. A promising distributed position and orientation system with flexible baseline for array SAR applications[C]//Proceedings of the European Navigation Conference. Piscataway: IEEE Press, 2020: 1-9.
    [10] 段振云, 戴现伟, 赵文辉, 等. 机翼颤振模型梁架加工变形研究[J]. 机械工程师, 2014(5): 113-115.

    DUAN Z Y, DAI X W, ZHAO W H, et al. Research on machining distortion of wing flutter model beams[J]. Mechanical Engineer, 2014(5): 113-115(in Chinese).
    [11] 周健斌, 章俊杰, 孟光. 计及陀螺效应的翼吊式机翼-发动机系统结构动力学特性研究[J]. 振动与冲击, 2012, 31(6): 145-149.

    ZHOU J B, ZHANG J J, MENG G. Structural dynamic characteristics of a wing-engine system with gyro effects[J]. Journal of Vibration and Shock, 2012, 31(6): 145-149(in Chinese).
    [12] 朱庄生, 张萌. 面向InSAR的空气扰动影响机翼挠曲变形建模[J]. 北京航空航天大学学报, 2020, 46(1): 38-50.

    ZHU Z S, ZHANG M. Air disturbance affecting wing deflection deformation modeling for InSAR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 38-50(in Chinese).
    [13] ZHU Z S, ZHANG M, ZHOU X Y. A new baseline measurement method for multi-node and multi-baseline interferometric SAR systems using fiber Bragg gratings[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 4-16. doi: 10.1109/TAES.2019.2939606
    [14] 王志刚. 自回归模型的定阶方法选择及弱信号探测[D]. 武汉: 武汉理工大学, 2020.

    WANG Z G. Selection of order determination method[D]. Wuhan: Wuhan University of Technology, 2020(in Chinese).
    [15] 何璇. 基于MATLAB的AR模型参数估计[J]. 信息与电脑, 2019(7): 5-6.

    HE X. MATLAB-based parameter estimation of AR model[J]. China Computer & Communication, 2019(7): 5-6(in Chinese).
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  83
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2023-02-12
  • 网络出版日期:  2023-03-09
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答