-
摘要:
为降低挠性陀螺的漂移率,提高挠性陀螺的精度,基于经验模态分解(EMD)、求和自回归移动平均(ARIMA)2种信号处理工具,提出EMD-ARIMA漂移模型。设计野点剔除算子,避免EMD过程中出现过冲、欠冲问题;对本征模态函数(IMF)辨识进行讨论,制定各阶IMF的使用原则;设计自适应定阶寻优算子,避免依靠技术人员判读自相关图、偏自相关图进行ARIMA建模,实现对多个信号(或多阶IMF)进行EMD-ARIMA建模的批处理功能。将重构的拟合信号和原始信号进行对比。工程实践表明:最终重构的拟合信号较原始信号漂移率降低了12.8%;Allan方差各项误差源均降低,
M APE为3.6×10−3,R MSE为5.1×10−3,残差趋于白噪声;漂移模型在挠性陀螺漂移建模中,具有同路重复性、两路一致性、不同个体通用性。-
关键词:
- 挠性陀螺 /
- 求和自回归移动平均模型 /
- 经验模态分解 /
- 野点剔除算子 /
- 自适应定阶寻优算子
Abstract:In order to reduce the drift rate of the flexible gyro and improve the precision of the flexible gyro, EMD-ARIMA drift model was proposed based on empirical mode decomposition (EMD) and autoregressive integrated moving average (ARIMA) signal processing tools. The outfield removal operator is designed to avoid the overshoot and undershoot problems in the EMD process. The identification of the intrinsic mode function (IMF) is discussed, and the principles for the use of IMF at various levels are formulated. By depending on technical staff to interpret autocorrelation and partial autocorrelation graphs and to implement the batch processing function of EMD-ARIMA modeling for multiple signals (or multi-order IMFs), the adaptive order optimization operator is intended to avoid ARIMA modelling. Comparing the reconstructed fitting signal with the original signal, the engineering practice shows that the drift rate of the final reconstructed fitting signal is 12.8% lower than that of the original signal. All the error sources of Allan variance are reduced. Meanwhile, the
M APE is 3.6×10−3, and theR MSE is 5.1×10−3. The drift model in flexible gyro drift modeling possesses the qualities of universality in many individuals, consistency in two ways, and repetition in one manner. -
表 1 各阶IMF对应的最优模型
Table 1. Optimal models corresponding to each order of IMF
${\text{IMF}}$阶数 p d q AIC $ {\phi _1} $ $ {\phi _2} $ $ {\theta _1} $ $ \sigma _\varepsilon ^2 $ $ I_{\mathrm{MF}} $标准差 $ I_{\mathrm{MF}}^{{\mathrm{Fit}}} $标准差 MAPE RMSE 1 1 0 1 −12.9 −0.82 0 −1.00 2.4×10−6 1.6×10−3 1.2×10−5 1.2 1.6×10−3 2 2 0 0 −15.4 1.72 −0.88 0 2.1×10−7 2.4×10−3 5.3×10−4 2.4 2.5×10−3 3 2 0 0 −18.5 1.95 −0.99 0 9.0×10−9 3.1×10−3 2.6×10−3 5.2 3.4×10−3 4 2 0 0 −22.4 1.99 −1.00 0 1.8×10−10 3.0×10−3 2.9×10−3 2.5×10−1 2.3×10−3 5 2 1 0 −32.3 2.00 −1.00 0 9.7×10−15 2.0×10−3 1.7×10−3 1.3 5.2×10−4 6 2 1 0 −37.4 2.00 −1.00 0 5.8×10−17 1.9×10−3 1.9×10−3 1.5×10−1 9.9×10−5 7 2 0 0 −33.9 2.00 −1.00 0 1.8×10−15 1.7×10−3 1.7×10−3 5.1×10−2 1.3×10−5 8 2 1 0 −47.6 2.00 −1.00 0 2.1×10−21 2.4×10−3 2.4×10−3 3.9×10−3 2.4×10−6 9 2 1 0 −54.4 2.00 −1.00 0 2.3×10−24 2.4×10−3 2.4×10−3 1.3×10−4 9.7×10−8 表 2 量化对比汇总表
Table 2. Summary of quantitative comparison table
序列 标准差/
10−3mV漂移率/
((°)·h−1)零偏不稳定性/
((°)·h−1)角速率游走/
((°)·h−3/2)速率斜坡/
((°)·h−2)MAPE RMSE 原始序列 7.8 0.78 20.5 1960 271000 AR(1)模型拟合序列 2.2 0.22 5.0 468 64900 4.9×10−3 7.1×10−3 AR(2)模型拟合序列 2.3 0.23 5.3 487 67500 4.9×10−3 7.0×10−3 EMD-ARIMA漂移序列 6.8 0.68 18.1 1020 75300 3.6×10−3 5.1×10−3 表 3 实测序列与预测序列的量化对比汇总
Table 3. Summary of quantitative comparison between measured and predicted sequences
序列 均值/mV 标准差/mV 漂移率/((°)·h−1) 零偏不稳定性/
((°)·h−1)角速率游走/
((°)·h−3/2)速率斜坡/
((°)·h−2)MAPE RMSE 实测序列 1.115 6.86×10−3 0.686 22.8 1990 276000 预测序列 1.121 2.84×10−3 0.284 3.71 151 9300 6.5×10−3 9.0×10−3 表 4 EMD-ARIMA漂移模型信息汇总
Table 4. Summary of EMD-ARIMA drift model information
小时数 IMF总阶数 IMF阶数 p d q $ {\phi _1} $ $ {\phi _2} $ $ {\theta _1} $ $ {\theta _2} $ $ {\theta _3} $ $ \sigma _\varepsilon ^2 $ 第2小时 8 1 2 0 3 −0.50 −0.75 −0.53 −0.59 0.30 2.3×10−6 2 2 0 0 1.75 −0.88 0 0 0 2.3×10−7 3 2 0 0 1.95 −0.99 0 0 0 8.7×10−9 4 2 0 0 1.99 −1.00 0 0 0 2.0×10−10 5 2 1 0 2.00 −1.00 0 0 0 7.7×10−15 6 2 1 0 2.00 −1.00 0 0 0 1.9×10−17 7 2 1 0 2.00 −1.00 0 0 0 1.1×10−19 8 2 1 0 2.00 −1.00 0 0 0 1.2×10−22 第3小时 8 1 1 0 1 0.72 0 0.81 0 0 2.8×10−6 2 2 0 0 1.73 −0.86 0 0 0 2.9×10−7 3 2 0 0 1.95 −0.99 0 0 0 9.9×10−9 4 2 0 0 1.99 −1.00 0 0 0 1.6×10−10 5 2 1 0 2.00 −1.00 0 0 0 9.3×10−15 6 2 1 0 2.00 −1.00 0 0 0 2.7×10−17 7 2 1 0 2.00 −1.00 0 0 0 2.5×10−20 8 2 0 0 2.00 −1.00 0 0 0 2.1×10−18 第4小时 9 1 1 0 1 0.70 0 0.82 0 0 2.7×10−6 2 2 0 0 1.75 −0.86 0 0 0 2.8×10−7 3 2 0 0 1.96 −0.99 0 0 0 1.2×10−8 4 2 1 0 1.99 −1.00 0 0 0 3.1×10−12 5 2 1 0 2.00 −1.00 0 0 0 7.5×10−15 6 2 1 0 2.00 −1.00 0 0 0 8.7×10−18 7 2 1 0 2.00 −1.00 0 0 0 4.3×10−20 8 2 1 0 2.00 −1.00 0 0 0 2.4×10−22 9 2 1 0 2.00 −1.00 0 0 0 7.1×10−27 表 5 220024#Y路EMD-ARIMA漂移模型
Table 5. 220024# Y-channel EMD-ARIMA drift model
小时数 IMF总阶数 IMF阶数 p d q $ {\phi _1} $ $ {\phi _2} $ $ {\theta _1} $ $ {\theta _2} $ $ {\theta _3} $ $ \sigma _\varepsilon ^2 $ 1 8 1 1 0 3 −0.83 0 −0.82 0.46 0.32 2.8×10−6 2 2 0 0 1.77 −0.91 0 0 0 2.4×10−7 3 2 0 0 1.96 −0.99 0 0 0 5.7×10−9 4 2 0 0 1.99 −1.00 0 0 0 1.2×10−10 5 2 1 0 2.00 −1.00 0 0 0 3.2×10−15 6 2 1 0 2.00 −1.00 0 0 0 6.2×10−18 7 2 0 0 2.00 −1.00 0 0 0 6.5×10−16 8 2 1 0 2.00 −1.00 0 0 0 5.6×10−23 表 6
210073 #X路EMD-ARIMA漂移模型Table 6.
210073 # X-channel EMD-ARIMA drift model小时数 IMF总阶数 IMF阶数 p d q $ {\phi _1} $ $ {\phi _2} $ $ \sigma _\varepsilon ^2 $ 1 10 1 2 0 0 0.05 −0.19 2.2×10−5 2 2 0 0 1.70 −0.84 3.0×10−6 3 2 0 0 1.94 −0.98 1.1×10−7 4 2 0 0 1.99 −1.00 1.7×10−9 5 2 1 0 2.00 −1.00 4.4×10−3 6 2 0 0 2.00 −1.00 5.8×10−3 7 2 0 0 2.00 −1.00 7.3×10−15 8 2 0 0 2.00 −1.00 2.2×10−16 9 2 0 0 2.00 −1.00 4.8×10−17 10 2 1 0 2.00 −1.00 6.0×10−24 -
[1] 王亚辉, 李醒飞, 纪越, 等. 改进极大似然法动力调谐陀螺仪闭环辨识[J]. 纳米技术与精密工程, 2017, 15(6): 499-506.WANG Y H, LI X F, JI Y, et al. Dynamically tuned gyroscope closed-loop identification based on modified maximum likelihood method[J]. Nanotechnology and Precision Engineering, 2017, 15(6): 499-506(in Chinese). [2] 柴栋栋, 宋仁银, 王吉顺. 基于ER-EMD的陀螺仪信号去噪方法[J]. 四川兵工学报, 2011, 32(12): 36-41.CHAI D D, SONG R Y, WANG J S. Denoising method of gyroscope signal based on ER-EMD[J]. Journal of Sichuan Ordnance, 2011, 32(12): 36-41(in Chinese). [3] 吉世涛, 万彦辉, 裴纺霞, 等. 挠性陀螺随机漂移模型的神经网络辨识[J]. 导航与控制, 2003(4): 62-67.JI S T, WAN Y H, PEI F X, et al. Using neural network to identify DTG random drift model[J]. Navigation and Control, 2003(4): 62-67(in Chinese). [4] 王世方, 余志勇, 王新国. 模糊神经网络在动调陀螺随机误差建模中的应用[J]. 弹箭与制导学报, 2008, 28(3): 55-58. doi: 10.3969/j.issn.1673-9728.2008.03.016WANG S F, YU Z Y, WANG X G. Random error model based on fuzzy network application to DTG[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3): 55-58(in Chinese). doi: 10.3969/j.issn.1673-9728.2008.03.016 [5] 刘洋, 李杰, 张德彪, 等. 一种基于变分模态分解和样本熵的MEMS陀螺去噪方法[J]. 仪表技术与传感器, 2021(6): 90-94.LIU Y, LI J, ZHANG D B, et al. MEMS gyroscope denoising method based on variational mode decomposition and sample entropy[J]. Instrument Technique and Sensor, 2021(6): 90-94(in Chinese). [6] 史建伟, 李永伟. 基于VMD和CWT的MEMS陀螺仪输出降噪研究[J]. 计算机仿真, 2021, 38(5): 42-45. doi: 10.3969/j.issn.1006-9348.2021.05.009SHI J W, LI Y W. Research on noise reduction of MEMS gyroscope output based on VMD and CWT[J]. Computer Simulation, 2021, 38(5): 42-45(in Chinese). doi: 10.3969/j.issn.1006-9348.2021.05.009 [7] 张萌, 王虹, 吕东. MEMS陀螺仪随机误差分析与建模[J]. 电光与控制, 2022, 29(6): 68-71. doi: 10.3969/j.issn.1671-637X.2022.06.014ZHANG M, WANG H, LYU D. Random error of MEMS gyroscope: Analysis and modeling[J]. Electronics Optics & Control, 2022, 29(6): 68-71(in Chinese). doi: 10.3969/j.issn.1671-637X.2022.06.014 [8] 周百令. 动力调谐陀螺仪设计与制造[M]. 南京: 东南大学出版社, 2002.ZHOU B L. Design and manufacture of dynamically tune gyroscope[M]. Nanjing: Southeast University Press, 2002(in Chinese). [9] 罗麟经, 杨军, 宋有山. 动力调谐陀螺仪与g2有关及谐振引起的漂移误差分析[J]. 战术导弹控制技术, 2003(2): 26-31. doi: 10.3969/j.issn.1009-1300-B.2003.02.006LUO L J, YANG J, SONG Y S. Analysis of the drift errors with related to g2 and resonance-induced for DTG[J]. Control Technology of Tactical Missile, 2003(2): 26-31(in Chinese). doi: 10.3969/j.issn.1009-1300-B.2003.02.006 [10] 张宁. 基于CEEMD阈值和相关系数原理的MEMS陀螺信号去噪方法[J]. 传感技术学报, 2018, 31(9): 1383-1388. doi: 10.3969/j.issn.1004-1699.2018.09.015ZHANG N. Signal de-noising method for MEMS gyroscope based on CEEMD threshold and correlation coefficient principle[J]. Chinese Journal of Sensors and Actuators, 2018, 31(9): 1383-1388(in Chinese). doi: 10.3969/j.issn.1004-1699.2018.09.015 [11] HE J N, ZHONG Y, LI X F. Multi-scale prediction of MEMS gyroscope random drift based on EMD-SVR[J]. Journal of Measurement Science and Instrumentation, 2020, 11(3): 290-296. [12] 王燕. 应用时间序列分析[M]. 6版. 北京: 中国人民大学出版社, 2022.WANG Y. Applied time series analysis[M]. 6th ed. Beijing: China Renmin University Press, 2022(in Chinese). [13] 吴宗收, 汪立新, 李新三, 等. 一种改进PSO-ARMA半球谐振陀螺温度误差建模方法[J]. 北京航空航天大学学报, 2022, 48(6): 1050-1056.WU Z S, WANG L X, LI X S, et al. An improved PSO-ARMA method for temperature error modeling of hemispherical resonator gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1050-1056(in Chinese). [14] 刘明, 刘金辉, 陈金萌, 等. 基于改进EMD的MEMS陀螺仪降噪方法[J]. 传感技术学报, 2020, 33(5): 705-710. doi: 10.3969/j.issn.1004-1699.2020.05.014LIU M, LIU J H, CHEN J M, et al. MEMS gyroscope noise reduction method based on improved EMD[J]. Chinese Journal of Sensors and Actuators, 2020, 33(5): 705-710(in Chinese). doi: 10.3969/j.issn.1004-1699.2020.05.014 [15] 李文华, 汪立新, 沈强, 等. 基于EMD的MEMS陀螺仪随机漂移分析方法[J]. 北京航空航天大学学报, 2021, 47(9): 1927-1932.LI W H, WANG L X, SHEN Q, et al. Random drift analysis method of MEMS gyroscope based on EMD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1927-1932(in Chinese). [16] 王晨钢. 基于Shannon熵和EMD算法的MEMS陀螺仪信号降噪处理[J]. 电子设计工程, 2017, 25(10): 174-177. doi: 10.3969/j.issn.1674-6236.2017.10.043WANG C G. MEMS gyroscope signal denoise based on Shannon’s entropy and EMD[J]. Electronic Design Engineering, 2017, 25(10): 174-177(in Chinese). doi: 10.3969/j.issn.1674-6236.2017.10.043 [17] 丁明宽, 石志勇, 韩兰懿, 等. 基于EMD-DFA-小波阈值的MEMS陀螺信号去噪方法[J]. 火炮发射与控制学报, 2021, 42(2): 50-56.DING M K, SHI Z Y, HAN L Y, et al. MEMS gyroscope signal denoising method based on EMD-DFA-wavelet threshold[J]. Journal of Gun Launch & Control, 2021, 42(2): 50-56(in Chinese). [18] 李成, 刘洁瑜, 张斌. 半球谐振陀螺仪随机漂移数学模型研究[J]. 压电与声光, 2012, 34(5): 695-698. doi: 10.3969/j.issn.1004-2474.2012.05.013LI C, LIU J Y, ZHANG B. Research on mathematic model of random drift of hemispherical resonant gyro[J]. Piezoelectrics & Acoustooptics, 2012, 34(5): 695-698(in Chinese). doi: 10.3969/j.issn.1004-2474.2012.05.013