留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于狼群优化的卫星集群对空间目标围捕方法

刘彦昊 佘浩平 蒙波 黄剑斌 黄良伟

刘彦昊,佘浩平,蒙波,等. 基于狼群优化的卫星集群对空间目标围捕方法[J]. 北京航空航天大学学报,2024,50(12):3863-3871 doi: 10.13700/j.bh.1001-5965.2022.0877
引用本文: 刘彦昊,佘浩平,蒙波,等. 基于狼群优化的卫星集群对空间目标围捕方法[J]. 北京航空航天大学学报,2024,50(12):3863-3871 doi: 10.13700/j.bh.1001-5965.2022.0877
LIU Y H,SHE H P,MENG B,et al. Round-up method of space target by satellites swarm based on wolf pack optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3863-3871 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0877
Citation: LIU Y H,SHE H P,MENG B,et al. Round-up method of space target by satellites swarm based on wolf pack optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3863-3871 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0877

基于狼群优化的卫星集群对空间目标围捕方法

doi: 10.13700/j.bh.1001-5965.2022.0877
详细信息
    通讯作者:

    E-mail:shehp@bit.edu.cn

  • 中图分类号: V448.2

Round-up method of space target by satellites swarm based on wolf pack optimization

More Information
  • 摘要:

    卫星集群对空间目标形成围捕态势是空间轨道竞争的重要一环,利于卫星集群对目标实施全方位强实时探测感知、多角度追逃博弈。现有研究多基于微分对策理论求解一追一逃博弈模型,星群协同配合实现围捕则是研究难点。针对由卫星集群围捕空间目标这一难题,提出了基于狼群优化算法的空间目标围捕方法。将围捕任务总时长离散为多个决策周期,设计了综合考虑集群位置分布、合围态势、燃料消耗与安全防撞的适应度函数,通过对每个决策周期卫星集群内各星推力矢量的协同优化,控制卫星集群接近空间目标并近似均布在以目标为球心的球面上。仿真结果表明:所提方法能够快速获得卫星集群对空间目标围捕的机动策略,构建出集群围捕态势,有效支持空间轨道竞争任务。

     

  • 图 1  航天器相对运动参考坐标系

    Figure 1.  Spacecraft relative motion reference coordinate system

    图 2  推力方位角与仰角示意图

    Figure 2.  Azimuth and elevation of thrust

    图 3  卫星集群围捕目标卫星示意图

    Figure 3.  Satellites swarm round-up target satellite

    图 4  围捕任务流程

    Figure 4.  Flow chart of the round-up mission

    图 5  目标卫星与围捕卫星5相对参考卫星速度曲线

    Figure 5.  The velocity curves of the target satellite and the No. 5 round-up satellite relative to the reference satellite

    图 6  卫星集群与目标卫星之间距离变化曲线

    Figure 6.  Curves of distance change between satellites swarm and target satellite

    图 7  卫星集群与目标卫星位置分布示意图

    Figure 7.  Schematic diagram of position distribution of satellites swarm and target satellite

    图 8  燃料消耗质量变化曲线

    Figure 8.  Curve of fuel consumption quality

    图 9  围捕卫星5的推力变化

    Figure 9.  Thrust variation of the No. 5 round-up satellite

    表  1  围捕任务所需参数

    Table  1.   Parameters required for the round-up mission

    参数 数值
    围捕半径${r_{\mathrm{b}}}$/m 1 000
    “避碰区”半径$ {r_{{\mathrm{safe}}}} $/ m 1 000
    任务总时长${T_{\text{f}}}$/s 43 200
    决策周期时长/s 300
    集群各卫星质量${m_i}$/kg 100
    集群各卫星最大轨控推力${u_{\max }}$/N 10
    集群各卫星最小轨控推力${u_{\min }}$/N 8
    下载: 导出CSV

    表  2  参考卫星轨道根数

    Table  2.   Orbital elements of reference satellite

    半长轴/
    km
    偏心率 轨道倾角/
    rad
    升交点赤经/
    rad
    近地点幅角/
    rad
    平近点角/
    rad
    42164.2 0 0 0 0 3.496734
    下载: 导出CSV

    表  3  目标卫星与卫星集群相对参考卫星初始状态

    Table  3.   Initial state of target satellite and satellites swarm relative to the reference satellite

    卫星 $x$/m $y$/m ${\textit{z}}$/m $\dot x$/
    (m·s−1)
    $\dot y$ /
    ( m·s−1)
    $\dot {\textit{z}}$/
    ( m·s−1)
    目标卫星 50396.8 −290.8 −0.22 0 −5.53 0
    围捕卫星1 −29.64 50000.0 0 6.73 −2.72 0.176
    围捕卫星2 −24.82 44999.6 −0.22 7.50 0 0
    围捕卫星3 −11.69 30000.0 0 6.13 −4.32 0.082
    围捕卫星4 −8.18 24999.8 0 7.50 0 0
    围捕卫星5 −1.73 9999.4 0 7.47 0 0
    围捕卫星6 −11.17 30000 0 7.32 −1.62 −0.11
    下载: 导出CSV
  • [1] 许旭升, 党朝辉, 宋斌, 等. 基于多智能体强化学习的轨道追逃博弈方法[J]. 上海航天, 2022, 39(2): 24-31.

    XU X S, DANG Z H, SONG B, et al. Method for cluster satellite orbit pursuit-evasion game based on multi-agent deep deterministic policy gradient algorithm[J]. Aerospace Shanghai, 2022, 39(2): 24-31(in Chinese).
    [2] 吴其昌, 张洪波. 基于生存型微分对策的航天器追逃策略及数值求解[J]. 控制与信息技术, 2019(4): 39-43.

    WU Q C, ZHANG H B. Spacecraft pursuit strategy and numerical solution based on survival differential strategy[J]. Control and Information Technology, 2019(4): 39-43(in Chinese).
    [3] BATHER J A, ISAACS R. Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization[J]. Journal of the Royal Statistical Society Series A (General), 1966, 129(3): 474.
    [4] BERKOVITZ L D. Necessary conditions for optimal strategies in a class of differential games and control problems[J]. SIAM Journal on Control, 1967, 5(1): 1-24. doi: 10.1137/0305001
    [5] FRIEDMAN A. On the definition of differential games and the existence of value and of saddle points[J]. Journal of Differential Equations, 1970, 7(1): 69-91.
    [6] OSHMAN Y, RAD D A. Differential-game-based guidance law using target orientation observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 316-326. doi: 10.1109/TAES.2006.1603425
    [7] YE D, SHI M M, SUN Z W. Satellite proximate pursuit-evasion game with different thrust configurations[J]. Aerospace Science and Technology, 2020, 99: 105715. doi: 10.1016/j.ast.2020.105715
    [8] GONG H R, GONG S P, LI J F. Pursuit-evasion game for satellites based on continuous thrust reachable domain[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4626-4637. doi: 10.1109/TAES.2020.2998197
    [9] 张秋华, 孙松涛, 谌颖, 等. 时间固定的两航天器追逃策略及数值求解[J]. 宇航学报, 2014, 35(5): 537-544.

    ZHANG Q H, SUN S T, CHEN Y, et al. Strategy and numerical solution of pursuit-evasion with fixed duration for two spacecraft[J]. Journal of Astronautics, 2014, 35(5): 537-544(in Chinese).
    [10] YU D T, WANG H, ZHOU J P, et al. Capturability analysis of TPN guidance law for circular orbital pursuit-evasion[J]. Transactions of the japan society for Aeronautical And Space Sciences, 2017, 60(6): 347-354. doi: 10.2322/tjsass.60.347
    [11] 陈木生. 基于微分对策及协同进化算法的三航天器追逃策略求解[D]. 哈尔滨: 哈尔滨工业大学, 2021: 43-51.

    CHEN M S. Solution of three spacecraft pursuit strategy based on differential game and co-evolution algorithm[D]. Harbin: Harbin Institute of Technology, 2021: 43-51(in Chinese).
    [12] SARGENT L H, COVERSTONE V L, RODRIGUEZ N, et al. Toward reinforcement learning identification for swarms engaged in cooperative pursuit[C]//Proceedings of the AIAA SCITECH 2022 Forum. Reston: AIAA, 2022.
    [13] 刘暾, 赵钧. 空间飞行器动力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2003: 83-101.

    LIU T, ZHAO J. Spacecraft dynamics[M]. Harbin: Harbin Institute of Technology Press, 2003: 83-101(in Chinese).
    [14] CLOHESSY W H, WILTSHIRE R S. Terminal guidance system for satellite rendezvous[J]. Journal of the Aerospace Sciences, 1960, 27(9): 653-658. doi: 10.2514/8.8704
    [15] 刘源, 李玉玲, 郝勇, 等. 航天器三维空间追逃问题研究[J]. 系统工程与电子技术, 2018, 40(4): 868-877. doi: 10.3969/j.issn.1001-506X.2018.04.22

    LIU Y, LI Y L, HAO Y, et al. Research on three dimensional space pursuit-evasion of spacecraft[J]. Systems Engineering and Electronics, 2018, 40(4): 868-877(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.04.22
    [16] 吴虎胜, 张凤鸣, 吴庐山. 一种新的群体智能算法: 狼群算法[J]. 系统工程与电子技术, 2013, 35(11): 2430-2438.

    WU H S, ZHANG F M, WU L S. New swarm intelligence algorithm—Wolf pack algorithm[J]. Systems Engineering and Electronics, 2013, 35(11): 2430-2438(in Chinese).
    [17] 刘永兰, 李为民, 吴虎胜, 等. 基于狼群算法的无人机航迹规划[J]. 系统仿真学报, 2015, 27(8): 1838-1843.

    LIU Y L, LI W M, WU H S, et al. Track planning for unmanned aerial vehicles based on wolf pack algorithm[J]. Journal of System Simulation, 2015, 27(8): 1838-1843(in Chinese).
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  93
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2022-12-09
  • 网络出版日期:  2022-12-30
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答