留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑动力迟滞的分布式驱动车辆平面运动控制

董家臣 高钦和 刘志浩

董家臣,高钦和,刘志浩. 考虑动力迟滞的分布式驱动车辆平面运动控制[J]. 北京航空航天大学学报,2024,50(12):3842-3853 doi: 10.13700/j.bh.1001-5965.2022.0887
引用本文: 董家臣,高钦和,刘志浩. 考虑动力迟滞的分布式驱动车辆平面运动控制[J]. 北京航空航天大学学报,2024,50(12):3842-3853 doi: 10.13700/j.bh.1001-5965.2022.0887
DONG J C,GAO Q H,LIU Z H. Planar motion control of distributed-driven vehicles considering dynamic hysteresis[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3842-3853 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0887
Citation: DONG J C,GAO Q H,LIU Z H. Planar motion control of distributed-driven vehicles considering dynamic hysteresis[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3842-3853 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0887

考虑动力迟滞的分布式驱动车辆平面运动控制

doi: 10.13700/j.bh.1001-5965.2022.0887
基金项目: 国家自然科学基金(51905541); 陕西省自然科学基础研究计划(2020JQ487);陕西省高校科协青年人才托举计划(20190412)
详细信息
    通讯作者:

    E-mail:gaoqh206@163.com

  • 中图分类号: U461

Planar motion control of distributed-driven vehicles considering dynamic hysteresis

Funds: National Natural Science Foundation of China (51905541); Natural Science Basic Research Program of Shaanxi (2020JQ487); Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20190412)
More Information
  • 摘要:

    针对分布式驱动车辆平面运动横纵耦合特点及电驱动、轮胎响应延迟特性,提出一种考虑动力系统惯性迟滞、驱动与转向协同分配的安全行驶控制策略。将动力迟滞简化为轮胎力一阶惯性环节,与系统方程联立后建立升阶的车辆平面动力学模型;设计了包含参考状态生成层、轨迹跟踪控制层和控制量最优分配层的分层协同控制算法。使用单轨模型将驾驶员操作指令转译为期望稳态速度;基于抗扰模型预测控制器(DRMPC)设计轨迹跟踪算法,引入集总扩张状态观测器(ESO)进行扰动观测与系统重构,使用模型预测控制器(MPC)生成期望广义纵向力、侧向力和横摆力矩;底层基于系统模型执行控制量分配,通过雅可比线性化将驱动力矩与主动转向角解耦,视为等效控制量参与分配,并以最小轮胎力利用率为目标设计面向行驶安全的驱动/转向协同最优分配算法。处理器在环(PIL)实验表明:动力系统惯性迟滞对车辆运动状态存在影响;与忽略迟滞效应的传统控制策略相比,设计的分层控制策略在双移线工况测试中展现出控制精度和响应速度上的优势,在匀加速正弦转向工况测试中,通过控制力的再分配完成了高精度的平面运动控制,轮胎力利用率仅为传统基于规则分配策略的38.2%。

     

  • 图 1  车辆平面动力学模型示意图

    Figure 1.  Diagram of vehicle planar dynamics model

    图 2  本文策略框图

    Figure 2.  Block diagram of the proposed strategy

    图 3  单轨模型示意图

    Figure 3.  Diagram of a single-track model

    图 4  ESO扰动观测补偿示意图

    Figure 4.  Disturbance observation and compensation of ESO

    图 5  处理器在环实验平台

    Figure 5.  Test bench of processor in the loop experiment

    图 6  动力系统迟滞影响

    Figure 6.  Influence of the drive system hysteresis

    图 7  双移线工况下平面运动控制曲线

    Figure 7.  Planar motion control curves under double-lane change maneuver

    图 8  匀加速正弦转向工况下的控制曲线

    Figure 8.  Control curves under constant acceleration & sinusoidal steering maneuver

    表  1  车体参数

    Table  1.   Vehicle parameters

    m/kg Iz/(kg·m2 lf1/m lf2/m lf3/m lf4/m ls/m Reff/m Cα h/m
    1460 2500 1.015 1.015 −1.9 −1.9 0.96 0.325 2.1×104 0.54
    下载: 导出CSV

    表  2  控制参数

    Table  2.   Controller parameters

    参数 数值
    ωo 10
    p 4
    Q diag{[2×102, 4×102, 2×103,1,1,1]}×6×103
    R diag{[2,1,1]}×10−1
    [axmax ,aymax ,azmax] [5 m/s2,1 m/s2,5 rad/s2]
    [Vxmax, Vymax, Ωzmax] [30 m/s,5 m/s,2 rad/s]
    kmax 5×102×[1,1,1,1,0.01,0.01]
    下载: 导出CSV
  • [1] HORI Y. Future vehicle driven by electricity and control-research on four-wheel-motored “UOT electric March II”[J]. IEEE Transactions on Industrial Electronics, 2004, 51(5): 954-962. doi: 10.1109/TIE.2004.834944
    [2] VAEZ S, JOHN V I, RAHMAN M A. Energy saving vector control strategies for electric vehicle motor drives[C]//Proceedings of the Power Conversion Conference. Piscataway: IEEE Press, 1997: 13-18.
    [3] SHINO M. Yaw-moment control of electric vehicle for improving handling and stability[J]. JSAE Review, 2001, 22(4): 473-480. doi: 10.1016/S0389-4304(01)00130-8
    [4] HSU Y H , GERDES J C. Stabilization of a steer-by-wire vehicle at the limits of handling using feedback linearization[C]//Proceedings of the International Mechanical Engineering Congress and Exposition. New York: ASME, 2008: 483-492.
    [5] DING N G, TAHERI S. An adaptive integrated algorithm for active front steering and direct yaw moment control based on direct Lyapunov method[J]. Vehicle System Dynamics, 2010, 48(10): 1193-1213. doi: 10.1080/00423110903377360
    [6] CHATZIKOMIS C, SORNIOTTI A, GRUBER P, et al. Comparison of path tracking and torque-vectoring controllers for autonomous electric vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(4): 559-570. doi: 10.1109/TIV.2018.2874529
    [7] 余卓平, 杨鹏飞, 熊璐. 控制分配理论在车辆动力学控制中的应用[J]. 机械工程学报, 2014, 50(18): 99-107. doi: 10.3901/JME.2014.18.099

    YU Z P, YANG P F, XIONG L. Application of control allocation in distributed drive electric vehicle[J]. Journal of Mechanical Engineering, 2014, 50(18): 99-107(in Chinese). doi: 10.3901/JME.2014.18.099
    [8] WANG J M, LONGORIA R G. Coordinated vehicle dynamics control with control distribution[C]//Proceedings of the American Control Conference. Piscataway: IEEE Press, 2006: 6.
    [9] DE NOVELLIS L, SORNIOTTI A, GRUBER P. Wheel torque distribution criteria for electric vehicles with torque-vectoring differentials[J]. IEEE Transactions on Vehicular Technology, 2014, 63(4): 1593-1602. doi: 10.1109/TVT.2013.2289371
    [10] 余卓平, 冯源, 熊璐. 分布式驱动电动汽车动力学控制发展现状综述[J]. 机械工程学报, 2013, 49(8): 105-114. doi: 10.3901/JME.2013.08.105

    YU Z P, FENG Y, XIONG L. Review on vehicle dynamics control of distributed drive electric vehicle[J]. Journal of Mechanical Engineering, 2013, 49(8): 105-114(in Chinese). doi: 10.3901/JME.2013.08.105
    [11] HAJILOO R, KHAJEPOUR A, ZENGIN H, et al. A coupled force predictive control of vehicle stability using front/rear torque allocation with experimental verification[J]. Vehicle System Dynamics, 2022, 60(7): 2541-2563. doi: 10.1080/00423114.2021.1912363
    [12] KAPANIA N R, GERDES J C. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling[J]. Vehicle System Dynamics, 2015, 53(12): 1687-1704. doi: 10.1080/00423114.2015.1055279
    [13] HU Y, ZHANG X Z, WANG Y N. Design of vehicle stability control of distributed-driven electric vehicle based on optimal torque allocation[C]//Proceedings of the 33rd Chinese Control Conference. Piscataway: IEEE Press, 2014: 195-200.
    [14] YU Z P, LENG B, XIONG L, et al. Direct yaw moment control for distributed drive electric vehicle handling performance improvement[J]. Chinese Journal of Mechanical Engineering, 2016, 29(3): 486-497. doi: 10.3901/CJME.2016.0314.031
    [15] ASIABAR A N, KAZEMI R. A direct yaw moment controller for a four in-wheel motor drive electric vehicle using adaptive sliding mode control[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2019, 233(3): 549-567. doi: 10.1177/1464419318807700
    [16] YU Z P, HOU Y Y, LENG B, et al. Disturbance compensation and torque coordinated control of four In-wheel motor independent-drive electric vehicles[J]. IEEE Access, 2020, 8: 119758-119767. doi: 10.1109/ACCESS.2020.3005943
    [17] LIU M C, ZHANG C N, WANG Z F. Dynamics modelling and simulation on four-axle vehicle driven by in-wheel motors[J]. Transactions of Beijing Institute of Technology, 2014, 34(2): 143-147.
    [18] HU J Y, LI J Q, HU Z Y, et al. Energy-efficient torque-allocation strategy for a 6×6 vehicle using electric wheels[J]. eTransportation, 2021, 10: 100136. doi: 10.1016/j.etran.2021.100136
    [19] GUO N Y, ZHANG X D, ZOU Y, et al. A fast model predictive control allocation of distributed drive electric vehicles for tire slip energy saving with stability constraints[J]. Control Engineering Practice, 2020, 102: 104554. doi: 10.1016/j.conengprac.2020.104554
    [20] ZHANG Y T, NI J, TIAN H Q, et al. Integrated robust dynamics control of all-wheel-independently-actuated unmanned ground vehicle in diagonal steering[J]. Mechanical Systems and Signal Processing, 2022, 164: 108263. doi: 10.1016/j.ymssp.2021.108263
    [21] NI J, HU J B, XIANG C L. Envelope control for four-wheel independently actuated autonomous ground vehicle through AFS/DYC integrated control[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 9712-9726. doi: 10.1109/TVT.2017.2723418
    [22] WANG Q W, ZHAO Y Q, DENG Y J, et al. Optimal coordinated control of ARS and DYC for four-wheel steer and in-wheel motor driven electric vehicle with unknown tire model[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10809-10819. doi: 10.1109/TVT.2020.3012962
    [23] 梁艺潇, 李以农, KHAJEPOUR A, 等. 基于转向与主动横摆力矩协调的四轮驱动智能电动汽车路径跟踪控制[J]. 机械工程学报, 2021, 57(6): 142-155. doi: 10.3901/JME.2021.06.142

    LIANG Y X, LI Y N, KHAJEPOUR A, et al. Path following control for four-wheel drive electric intelligent vehicle based on coordination between steering and direct yaw moment system[J]. Journal of Mechanical Engineering, 2021, 57(6): 142-155(in Chinese). doi: 10.3901/JME.2021.06.142
    [24] ZHANG X Z, WEI K X, YUAN X F, et al. Optimal torque distribution for the stability improvement of a four-wheel distributed-driven electric vehicle using coordinated control[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(5): 051017. doi: 10.1115/1.4033004
    [25] 林程, 梁晟, 宫新乐, 等. 面向极限工况的分布式驱动电动汽车动力学集成控制方法[J]. 汽车工程, 2022, 44(9): 1372-1385.

    LIN C, LIANG S, GONG X L, et al. Integrated dynamic control strategy for extreme maneuvers of 4WIDEVs[J]. Automotive Engineering, 2022, 44(9): 1372-1385(in Chinese).
    [26] SHUAI Z B, LI C M, GAI J T, et al. Coordinated motion and powertrain control of a series-parallel hybrid 8×8 vehicle with electric wheels[J]. Mechanical Systems and Signal Processing, 2019, 120: 560-583. doi: 10.1016/j.ymssp.2018.10.033
    [27] CHEN W W, LIANG X T, WANG Q D, et al. Extension coordinated control of four wheel independent drive electric vehicles by AFS and DYC[J]. Control Engineering Practice, 2020, 101: 104504. doi: 10.1016/j.conengprac.2020.104504
    [28] 张海军, 万少华, 张明杰. 基于自抗扰控制的轮毂电机驱动电动汽车耦合振动抑制[J]. 汽车技术, 2023(5): 8-14.

    ZHANG H J, WAN S H, ZHANG M J. Coupling vibration suppression of in-wheel motor electric vehicle based on active disturbance rejection control[J]. Automobile Technology, 2023(5): 8-14(in Chinese).
    [29] 彭晓燕, 邢星飞, 崔庆佳, 等. 分布式电动汽车驱动力分配控制方法研究[J]. 汽车工程, 2022, 44(7): 1059-1068.

    PENG X Y, XING X F, CUI Q J, et al. Research on driving force distribution control method of distributed electric vehicles[J]. Automotive Engineering, 2022, 44(7): 1059-1068(in Chinese).
    [30] LU H Y, LU J W, WEI H, et al. Investigation of dynamical stability of vehicle lateral motion control system with feedback delay[J]. Scientia Sinica Technologica, 2022, 52(10): 1608-1622. doi: 10.1360/SST-2021-0527
    [31] 王喆, 周晓军, 杨辰龙, 等. 驾驶员制动意图对多轴车辆紧急制动迟滞特性的影响[J]. 汽车工程, 2018, 40(10): 1185-1191.

    WANG Z, ZHOU X J, YANG C L, et al. Effects of driver’s braking intention on hysteresis characteristics of emergency braking in multi-axle vehicle[J]. Automotive Engineering, 2018, 40(10): 1185-1191(in Chinese).
    [32] YUE W, GUO G. Guaranteed cost adaptive control of nonlinear platoons with actuator delay[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(5): 78-86.
    [33] 石晓辉, 曾键, 蒋欣, 等. 轮胎模型动态特性及参数分析[J]. 重庆理工大学学报(自然科学版), 2020, 34(1): 1-8.

    SHI X H, ZENG J, JIANG X, et al. Dynamic characteristics and parameter analysis of tire model[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(1): 1-8(in Chinese).
    [34] 高峰, 肖凌云, 王江峰. 基于迟滞鲁棒性的自动车队队列稳定性控制[J]. 北京航空航天大学学报, 2010, 36(10): 1153-1157.

    GAO F, XIAO L Y, WANG J F. Lag-delay robust string stable control of platoon of automated vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10): 1153-1157 (in Chinese).
    [35] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.

    HAN J Q. Active disturbance rejection control technique[M]. Beijing: National Defense Industry Press, 2008(in Chinese).
    [36] WINSTEAD V, KOLMANOVSKY I V. Estimation of road grade and vehicle mass via model predictive control[C]//Proceedings of the IEEE Conference on Control Applications. Piscataway: IEEE Press, 2005: 1588-1593.
    [37] JING H H, JIA F J, LIU Z Y. Multi-objective optimal control allocation for an over-actuated electric vehicle[J]. IEEE Access, 2018, 6: 4824-4833.
    [38] 白锦洋, 吴学雷, 高峰, 等. 多轴车辆动力传动系统建模与仿真[J]. 北京航空航天大学学报, 2017, 43(1): 136-143.

    BAI J Y, WU X L, GAO F, et al. Modeling and simulation of multi-axle vehicle powertrain system[J]. Journal of Beiging University of Aweonatics and Astronautics, 2017, 43(1): 136-143(in Chinese).
    [39] 程洪杰, 杨健福, 刘志浩, 等. 基于规则的多轴特种车辆稳定性集成控制[J]. 北京航空航天大学学报, 2024, 50(6): 1794-1805.

    CHENG H J, YANG J F, LIU Z H, et al. Rule-based integrated stability control of multi-axle special vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(6): 1794-1805 (in Chinese).
    [40] 殷国栋, 金贤建, 张云. 分布式驱动电动汽车底盘动力学控制研究综述[J]. 重庆理工大学学报(自然科学版), 2016, 30(8): 13-19.

    YIN G D, JIN X J, ZHANG Y. Overview for chassis vehicle dynamics control of distributed drive electric vehicle[J]. Journal of Chongqing University of Technology (Natural Science), 2016, 30(8): 13-19(in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  85
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2022-12-09
  • 网络出版日期:  2023-02-06
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答