留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进遗传算法的机场场道施工方案多目标优化

李汝宁 冯兴 姚仰平 张献民 张健

李汝宁,冯兴,姚仰平,等. 基于改进遗传算法的机场场道施工方案多目标优化[J]. 北京航空航天大学学报,2024,50(12):3720-3728 doi: 10.13700/j.bh.1001-5965.2022.0893
引用本文: 李汝宁,冯兴,姚仰平,等. 基于改进遗传算法的机场场道施工方案多目标优化[J]. 北京航空航天大学学报,2024,50(12):3720-3728 doi: 10.13700/j.bh.1001-5965.2022.0893
LI R N,FENG X,YAO Y P,et al. Multi-objective optimization of airport runway construction schemes based on improved genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3720-3728 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0893
Citation: LI R N,FENG X,YAO Y P,et al. Multi-objective optimization of airport runway construction schemes based on improved genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3720-3728 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0893

基于改进遗传算法的机场场道施工方案多目标优化

doi: 10.13700/j.bh.1001-5965.2022.0893
基金项目: 国家自然科学基金(51979001);天津市教委科研计划项目(2019KJ124)
详细信息
    通讯作者:

    E-mail:fxing_sjz@foxmail.com

  • 中图分类号: TU722

Multi-objective optimization of airport runway construction schemes based on improved genetic algorithm

Funds: National Natural Science Foundation of China (51979001); Tianjin Municipal Education Commission Scientific Research Plan Program (2019KJ124)
More Information
  • 摘要:

    为解决机场场道项目管理过程中,针对不同施工目标、施工工序中施工方案的选取问题,通过对机场场道施工工序多种施工方案的分析,从工期、质量和成本3个维度分别建立数学模型,在此基础上,采用改进遗传算法,以机场场道施工工序中施工方案为优化对象,以工期、质量和成本为优化目标,构建机场场道施工方案的多目标优化模型。采用Python语言,搭建面向对象的机场场道施工方案多目标优化的通用性框架,并基于PyQt5,实现参数输入、施工方案优化、优化结果输出功能的软件界面开发。以满足一定质量和成本为前提、工期最短为优化目标,对软件的优化性能进行了验证,通过对优化结果的分析表明:应用改进遗传算法,可有效进行机场场道施工方案的多目标优化,优化结果正确,满足优化目标的需求,可为机场场道施工项目决策提供参考。

     

  • 图 1  机场场道施工网络计划

    Figure 1.  Airport runway construction network plan

    图 2  决策变量编码结构示意图

    Figure 2.  Schematic diagram of structure of decision variable coding

    图 3  优化流程

    Figure 3.  Flow of optimization

    图 4  软件操作计算流程

    Figure 4.  Calculation flow of software operation

    图 5  种群个体状态

    Figure 5.  Individual status of population

    图 6  适应度变化曲线

    Figure 6.  Fitness variation curves

    表  1  机场场道施工工序

    Table  1.   Airport runway construction schedule

    过程编号施工过程工序名称工序序号
    1施工准备施工准备1
    2土石方工程清除腐殖土层2
    挖方3
    填方4
    平整表层5
    压实6
    3基层施工跑道和防吹坪基层施工7
    滑行道基层施工8
    围场路基层施工9
    机坪基层施工10
    4面层施工跑道和防吹坪面层施工11
    滑行道面层施工12
    围场路面层施工13
    机坪面层施工14
    5工程收尾工程收尾15
    下载: 导出CSV

    表  2  机场场道施工优化目标

    Table  2.   Optimization objective of airport runway construction

    目标 优化内容
    目标1 成本和质量控制在一定范围内的前提下,工期达到最短
    目标2 工期和质量控制在一定范围内的前提下,施工的总成本最小
    目标3 工期和成本控制在一定范围内的前提下,施工的质量最高
    下载: 导出CSV

    表  3  施工方案参数

    Table  3.   Construction scheme parameters

    工序序号 施工方案序号 工期/天 直接成本/元 间接成本/元 施工质量
    1 1 7 5314 1362 7.8
    2 8 4998 1567 8.7
    3 6 1432 1032 5.6
    2 1 10 9581 2682 8.0
    2 7 10321 2032 7.6
    3 5 4500 3210 6.8
    3 1 100 69431 33162 8.2
    2 108 65046 41537 9.5
    4 1 60 577 165 7.7
    2 70 480 210 9.7
    5 1 48 577 160 6.8
    2 55 605 231 9.2
    6 1 28 8861 2163 8.6
    2 35 8135 3263 9.3
    7 1 53 368716 98005 8.2
    2 62 356351 110236 7.8
    8 1 39 387752 63165 7.8
    2 43 366547 67533 9.1
    9 1 14 55654 9856 8.3
    2 18 51328 11246 8.9
    10 1 33 386321 103256 8.5
    2 36 364110 136142 9.6
    11 1 136 208650 62081 8.5
    2 145 183865 120115 9.1
    12 1 74 243706 52056 6.8
    2 80 231596 68449 9.1
    13 1 44 37846 11365 7.5
    2 49 35625 14025 9.2
    14 1 114 186455 81135 8.6
    2 126 175343 98741 9.1
    15 1 14 4782 1452 8.7
    2 15 5028 1765 9.2
    下载: 导出CSV

    表  4  软件运行参数

    Table  4.   Operating parameters of software

    参数 数值
    种群规模 1000
    进化代数 200
    实数编码长度 10
    二进制编码长度 20
    交叉概率 0.8
    变异概率 0.06
    最大成本/104 250
    最低质量 8.0
    下载: 导出CSV

    表  5  最优施工方案

    Table  5.   Optimal construction scheme

    施工工序序号 最优施工方案序号
    1 3
    2 3
    3 1
    4 2
    5 2
    6 2
    7 1
    8 2
    9 2
    10 1
    11 1
    12 1
    13 2
    14 2
    15 1
    下载: 导出CSV

    表  6  最优施工方案的工期、成本与质量

    Table  6.   Period, cost, and quality of optimal construction scheme

    施工工期/d 施工成本/元 施工质量
    261 2475104 8.4
    下载: 导出CSV
  • [1] 贾宏, 周波, 刘广兵. 基于层次分析法的风险模型优势分析[J]. 西南交通大学学报, 2009, 44(1): 72-76. doi: 10.3969/j.issn.0258-2724.2009.01.014

    JIA H, ZHOU B, LIU G B. Advantage analysis of risk model based on analytic hierarchy process[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 72-76(in Chinese). doi: 10.3969/j.issn.0258-2724.2009.01.014
    [2] 王维博, 冯全源. 基于改进粒子群算法的工程项目综合优化[J]. 西南交通大学学报, 2011, 46(1): 76-83. doi: 10.3969/j.issn.0258-2724.2011.01.012

    WANG W B, FENG Q Y. Synthesis optimization for construction project based on modified particle swarm optimization algorithm[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 76-83(in Chinese). doi: 10.3969/j.issn.0258-2724.2011.01.012
    [3] 何英, 唐晓宇, 彭亮, 等. 南疆丰收灌区水资源多目标优化配置方案优选[J]. 农业工程学报, 2021, 37(6): 117-126. doi: 10.11975/j.issn.1002-6819.2021.06.015

    HE Y, TANG X Y, PENG L, et al. Optimized selection of the solution for multi-objective optimal allocation of water resources in Fengshou Irrigation Areas of South Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 117-126(in Chinese). doi: 10.11975/j.issn.1002-6819.2021.06.015
    [4] 鲍劲松, 李志强, 周亚勤. 基于遗传算法的舰载装备多目标作业调度优化研究[J]. 系统仿真学报, 2019, 31(5): 901-908.

    BAO J S, LI Z Q, ZHOU Y Q. Multi-objective operation scheduling optimization of shipborne-equipment based on genetic algorithm[J]. Journal of System Simulation, 2019, 31(5): 901-908(in Chinese).
    [5] BERTHAUT F, PELLERIN R, PERRIER N, et al. Time-cost trade-offs in resource-constraint project scheduling problems with overlapping modes[J]. International Journal of Project Organisation and Management, 2014, 6(3): 215-236. doi: 10.1504/IJPOM.2014.065259
    [6] GWAK H S, SON S H, PARK Y J, et al. Exact time–cost tradeoff analysis in concurrency-based scheduling[J]. Journal of Construction Engineering and Management, 2016, 142(10): 04016054. doi: 10.1061/(ASCE)CO.1943-7862.0001164
    [7] FENG X, YAO Y P, LI R N, et al. Loading–unloading judgement for advanced plastic UH model[J]. Acta Mechanica Sinica, 2020, 36(4): 827-839. doi: 10.1007/s10409-020-00936-5
    [8] AMINBAKHSH S, SONMEZ R. Pareto front particle swarm optimizer for discrete time-cost trade-off problem[J]. Journal of Computing in Civil Engineering, 2017, 31(1): 04016040. doi: 10.1061/(ASCE)CP.1943-5487.0000606
    [9] EL-KHOLY A M. Time–cost tradeoff analysis considering funding variability and time uncertainty[J]. Alexandria Engineering Journal, 2013, 52(1): 113-121. doi: 10.1016/j.aej.2012.07.007
    [10] 谢存仁, 徐峰, 阮敏浩. 基于BIM与遗传算法的建筑工程施工进度多目标优化研究[J]. 工程管理学报, 2021, 35(3): 117-122.

    XIE C R, XU F, RUAN M H. Study on multi-objective optimization of construction schedule based on BIM and genetic algorithm[J]. Journal of Engineering Management, 2021, 35(3): 117-122(in Chinese).
    [11] 马聪聪. 基于改进遗传算法的地铁施工项目多目标优化[D]. 兰州: 兰州交通大学, 2020.

    MA C C. Multi-objective optimization of subway construction project based on improved genetic algorithm[D]. Lanzhou: Lanzhou Jiatong University, 2020(in Chinese).
    [12] 中国民用航空局. 2020年民航行业发展统计公报[EB/OL]. (2021-06-10)[2022-10-15]. https://www.gov.cn/xinwen/2021-06/10/content_5616880.htm.

    Civil Aviation Administration of China. Statistical bulletin of civil aviation industry development in 2020[EB/OL]. (2021-06-10)[2022-10-15]. https://www.gov.cn/xinwen/2021-06/10/content_5616880.htm(in Chinese).
    [13] 李汝宁, 何勇灵. 基于遗传算法的柴油机喷油系统模型参数辨识[J]. 北京航空航天大学学报, 2012, 38(4): 464-467.

    LI R N, HE Y L. Parameter identification of diesel fuel injection system model using genetic algorithms[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(4): 464-467(in Chinese).
    [14] 冯兴, 李汝宁, 安然, 等. 基于节能的机场飞行区平面布局优化[J]. 中国民航大学学报, 2016, 34(2): 27-31. doi: 10.3969/j.issn.1674-5590.2016.02.007

    FENG X, LI R N, AN R, et al. Plane layout optimization of airport flight area based on energy conservation[J]. Journal of Civil Aviation University of China, 2016, 34(2): 27-31(in Chinese). doi: 10.3969/j.issn.1674-5590.2016.02.007
    [15] 单宝英, 郭萍, 张帆, 等. 基于遗传算法与方案优选的多目标优化模型求解方法[J]. 中国农业大学学报, 2019, 24(6): 157-165. doi: 10.11841/j.issn.1007-4333.2019.06.18

    SHAN B Y, GUO P, ZHANG F, et al. A multi-objective optimization model solving method based on genetic algorithm and scheme evaluation[J]. Journal of China Agricultural University, 2019, 24(6): 157-165(in Chinese). doi: 10.11841/j.issn.1007-4333.2019.06.18
    [16] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [17] DEB K, ANAND A, JOSHI D. A computationally efficient evolutionary algorithm for real-parameter optimization[J]. Evolutionary Computation, 2002, 10(4): 371-395. doi: 10.1162/106365602760972767
    [18] 辛宇, 童孟军, 华宇婷. 一种基于最优特征选择改进的遗传算法[J]. 传感技术学报, 2018, 31(11): 1747-1752. doi: 10.3969/j.issn.1004-1699.2018.011.022

    XIN Y, TONG M J, HUA Y T. An improved genetic algorithm based on optimal feature selection[J]. Chinese Journal of Sensors and Actuators, 2018, 31(11): 1747-1752(in Chinese). doi: 10.3969/j.issn.1004-1699.2018.011.022
    [19] DEHGHAN R, HAZINI K, RUWANPURA J. Optimization of overlapping activities in the design phase of construction projects[J]. Automation in Construction, 2015, 59: 81-95. doi: 10.1016/j.autcon.2015.08.004
    [20] HAZINI K, DEHGHAN R, RUWANPURA J. A heuristic method to determine optimum degree of activity accelerating and overlapping in schedule compression[J]. Canadian Journal of Civil Engineering, 2013, 40(4): 382-391. doi: 10.1139/cjce-2012-0380
    [21] SROUR I M, ABDUL-MALAK M A U, YASSINE A A, et al. A methodology for scheduling overlapped design activities based on dependency information[J]. Automation in Construction, 2013, 29: 1-11. doi: 10.1016/j.autcon.2012.08.001
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  109
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2022-12-16
  • 网络出版日期:  2023-01-30
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答