Analysis and suppression of low-frequency harmonic current in space low-speed direct-driven servo system
-
摘要:
电机直驱伺服系统输出力矩直接作用于负载,受芯片工艺缺陷、相电感及检测电路非对称、电机定子开槽等因素影响,相电流的一次、二次谐波和齿谐波直接影响电磁转矩的稳定性。为提升系统的低速平稳度,基于电机数学模型和系统传递函数,指出3类低频谐波的产生原因。针对一次谐波,提出一种中心电流电气角更新与机械角赋值算法(CC-EUMA),提高磁路非理想时的谐波抑制能力,针对二次谐波和齿谐波,提出转速环双准比例谐振控制算法(SL-DQPR),在滤除谐波的同时兼具抗扰能力强和调参难度低的优势。通过仿真和实验验证了所提2种算法的有效性。加入算法后,电机空载运行的跟踪误差降低了2/3,实现了系统在有限硬件资源开销下的平稳运行,为空间低速直驱伺服系统的低速控制提供了新思路。
Abstract:The output torque of the motor direct-driven servo system acts directly on the load, due to chip process defects, phase inductance, detection circuit asymmetry and other factors, motor stator slotting and other factors, the first and second harmonics of phase current and tooth harmonic will directly affect the stability of electromagnetic torque. The first step in enhancing the system’s low-speed smoothness is identifying the root causes of the three different kinds of low-frequency harmonics. Second, in order to enhance the harmonic suppression capability in cases when the magnetic circuit is not ideal, a unique electrical angle update and mechanical angle assignment algorithm for center current (CC-EUMA) is presented for the first harmonic.For the second harmonic and tooth harmonic, the double quasi-proportional resonant control algorithm for speed loop (SL-DQPR) is proposed, which has the advantages of both strong anti-disturbance ability and low tuning difficulties while filtering harmonics. Finally, the effectiveness of the two algorithms is verified by simulation and experiment. After adding these algorithms, the tracking error of the motor in no-load operation is reduced to one-third of the original, which realizes the smooth operation of the system with limited hardware resource overhead and provides a new idea for the low-speed control of the space direct drive servo system. The tracking error of the motor in no-load operation is reduced to one-third of its original value once these algorithms are included, allowing the system to operate smoothly with less hardware resource overhead and offering a fresh concept for the low-speed management of space direct drive servo system.
-
表 1 连续和离散QPR控制器参数
Table 1. Continuous and discrete QPR controller parameters
${T_{\mathrm {s}}}$/ms ${k_{\mathrm {p}}}$ ${k_{\mathrm {r}}}$ ${f_1}$/Hz ${f_{{\mathrm{c}}1}}$/Hz ${f_2}$/Hz ${f_{{\mathrm{c}}2}}$/Hz 0.2 1 20 2 0.1 15 0.75 表 2 PMSM仿真参数
Table 2. PMSM simulation parameters
${T_{\mathrm {e}}}$/(N·m) $J$/(kg·m2) $L$/mH $R$/Ω $p/$对 0 1.48×10−5 2.3 1.66 1 表 3 SVPWM仿真参数
Table 3. SVPWM simulation parameters
${U_{{\mathrm {dc}}}}$/V $T$/μs ${T_{\mathrm {s}}}$/μs ${T_{\mathrm {d}}}$/μs 12 200 0.2 0.2 -
[1] 翟少雄, 王长胜, 谭立, 等. 空间高精度扫描伺服系统的驱动控制[J]. 光学精密工程, 2016, 24(5): 1104-1111. doi: 10.3788/OPE.20162405.1104ZHAI S X, WANG C S, TAN L, et al. Driving and controlling of high accuracy scanning servo-system in space[J]. Optics and Precision Engineering, 2016, 24(5): 1104-1111(in Chinese). doi: 10.3788/OPE.20162405.1104 [2] XIA X Q, ZHANG B, LI X T. High precision low-speed control for permanent magnet synchronous motor[J]. Sensors, 2020, 20(5): 1526. doi: 10.3390/s20051526 [3] ZHU C, ZENG Z Y, ZHAO R X. Torque ripple elimination based on inverter voltage drop compensation for a three-phase four-switch inverter-fed PMSM drive under low speeds[J]. IET Power Electronics, 2017, 10(12): 1430-1437. [4] PEYGHAMBARI A, DASTFAN A, AHMADYFARD A. Selective voltage noise cancellation in three-phase inverter using random SVPWM[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4604-4610. [5] 李帅, 孙立志, 刘兴亚, 等. 永磁同步电机电流谐波抑制策略[J]. 电工技术学报, 2019, 34(S1): 87-96.LI S, SUN L Z, LIU X Y, et al. Current harmonics suppression strategies of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 87-96(in Chinese). [6] DAJAKU G, GERLING D. A novel 12-teeth/10-poles PM machine with flux barriers in stator yoke[C]//Proceedings of the 20th International Conference on Electrical Machines. Piscataway: IEEE Press, 2012: 36-40. [7] 罗正豪, 柳霖, 井立兵. 新型Halbach阵列永磁电机谐波分析与优化[J]. 微特电机, 2017, 45(11): 19-22. doi: 10.3969/j.issn.1004-7018.2017.11.005LUO Z H, LIU L, JING L B. Harmonic analysis and optimization of a novel halbach array permanent magnet motor[J]. Small & Special Electrical Machines, 2017, 45(11): 19-22(in Chinese). doi: 10.3969/j.issn.1004-7018.2017.11.005 [8] 王明星, 王爱元, 李轶华. 一种优化齿槽转矩抑制永磁同步电机振动和噪声的方法[J]. 电机与控制应用, 2017, 44(2): 110-114. doi: 10.3969/j.issn.1673-6540.2017.02.020WANG M X, WANG A Y, LI Y H. A way of optimizing cogging torque to reduce vibration and noise for permanent magnet synchronous motor[J]. Electric Machines & Control Application, 2017, 44(2): 110-114(in Chinese). doi: 10.3969/j.issn.1673-6540.2017.02.020 [9] TANG Z Y, AKIN B. Suppression of dead-time distortion through revised repetitive controller in PMSM drives[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 918-930. doi: 10.1109/TEC.2017.2679701 [10] 廖勇, 甄帅, 刘刃, 等. 用谐波注入抑制永磁同步电机转矩脉动[J]. 中国电机工程学报, 2011, 31(21): 119-127.LIAO Y, ZHEN S, LIU R, et al. Torque ripple suppression of permanent magnet synchronous motor by the harmonic injection[J]. Proceedings of the CSEE, 2011, 31(21): 119-127(in Chinese). [11] 樊明迪, 林辉, 吕帅帅. 一种抑制PMSM-DTC周期性转速脉动的方法[J]. 电机与控制学报, 2013, 17(9): 73-78. doi: 10.3969/j.issn.1007-449X.2013.09.011FAN M D, LIN H, LÜ S S. Method to reduce periodical speed ripple in PMSM-DTC system[J]. Electric Machines and Control, 2013, 17(9): 73-78(in Chinese). doi: 10.3969/j.issn.1007-449X.2013.09.011 [12] QU J Z, ZHANG C N, JATSKEVICH J, et al. Deadbeat harmonic current control of permanent magnet synchronous machine drives for torque ripple reduction[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(3): 3357-3370. doi: 10.1109/JESTPE.2021.3062833 [13] 张志忠, 王强, 陆永平. 无刷直流电动机系统的波动力矩抑制方法[J]. 微特电机, 1998(5): 11-13.ZHANG Z Z, WANG Q, LU Y P. Methods of suppressing ripple torque of the BLDC motor system[J]. Small & Special Electrical Machines, 1998(5): 11-13(in Chinese). [14] 赵辉, 冯英浚, 张志忠, 等. 神经网络用于永磁同步电机系统波动力矩补偿[J]. 哈尔滨工业大学学报, 2003, 35(1): 5-7. doi: 10.3321/j.issn:0367-6234.2003.01.002ZHAO H, FENG Y J, ZHANG Z Z, et al. Application of neural network for ripple torque compensation of permanent magnet synchronous motor system[J]. Journal of Harbin Institute of Technology, 2003, 35(1): 5-7(in Chinese). doi: 10.3321/j.issn:0367-6234.2003.01.002 [15] AHN H S, CHEN Y Q, DOU H F. State-periodic adaptive compensation of cogging and Coulomb friction in permanent-magnet linear motors[J]. IEEE Transactions on Magnetics, 2005, 41(1): 90-98. doi: 10.1109/TMAG.2004.840182 [16] 莫会成. 永磁交流伺服电动机转矩波动分析[J]. 微电机, 2007, 40(3): 1-4. doi: 10.3969/j.issn.1001-6848.2007.03.001MO H C. Analysis of permanet-magent AC servo motor torque ripple[J]. Micromotors, 2007, 40(3): 1-4(in Chinese). doi: 10.3969/j.issn.1001-6848.2007.03.001 [17] 王秀和. 电机学[M]. 3版. 北京: 机械工业出版社, 2019: 391.WANG X H. Electric machinery[M]. 3rd ed. Beijing: China Machine Press, 2019: 391(in Chinese). [18] 扈建龙. 面向传动装置的电驱动系统振动噪声机理与抑制方法研究[D]. 长春: 吉林大学, 2019.HU J L. Study on vibration and noise mechanism and suppression method of electric drive system oriented to transmission device[D]. Changchun: Jilin University, 2019(in Chinese). [19] 杨浩东. 永磁同步电机电磁振动分析[D]. 杭州: 浙江大学, 2011.YANG H D. Electromagnetic vibration analysis of permanent magnet synchronous motor[D]. Hangzhou: Zhejiang University, 2011(in Chinese). [20] GÜEMES J A, IRAOLAGOITIA A M, FERNÁNDEZ P, et al. Comparative study of PMSM with integer-slot and fractional-slot windings[C]//Proceedings of the 19th International Conference on Electrical Machines. Piscataway: IEEE Press, 2010: 1-6. [21] 王成元, 夏加宽, 孙宜标. 现代电机控制技术[M]. 2版. 北京: 机械工业出版社, 2014: 252.WANG C Y, XIA J K, SUN Y B. Modern control technology for electric machines[M]. 2nd ed. Beijing: China Machine Press, 2014: 252(in Chinese). [22] 张文海, 李家会, 徐丽. 永磁直流力矩电机力矩波动的实验分析[J]. 微电机, 2004, 37(6): 64-66.ZHANG W H, LI J H, XU L. Experimental analysis of torque fluctuation of permanent magnet DC torque motor[J]. Micromotors, 2004, 37(6): 64-66(in Chinese). [23] 潘玉玲. 分数槽集中绕组永磁同步电机电枢反应对永磁体影响分析[D]. 天津: 天津大学, 2010.PAN Y L. Analysis of the influence of armature reaction of fractional slot concentrated winding permanent magnet synchronous motor on permanent magnet[D]. Tianjin: Tianjin University, 2010(in Chinese). [24] 何芝强. PID控制器参数整定方法及其应用研究[D]. 杭州: 浙江大学, 2005.HE Z Q. Research on parameter tuning method of PID controller and its application[D]. Hangzhou: Zhejiang University, 2005(in Chinese). [25] 陈娟. 伺服系统低速特性与抖动补偿研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2001.CHEN J. Research on low-speed characteristics and jitter compensation of servo system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2001(in Chinese). [26] XIA C L, JI B N, YAN Y. Smooth speed control for low-speed high-torque permanent-magnet synchronous motor using proportional-integral-resonant controller[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2123-2134. doi: 10.1109/TIE.2014.2354593 [27] 黎安庆. 低速高精度条件下的伺服控制系统设计[D]. 成都: 电子科技大学, 2016.LI A Q. Design of servo control system under the condition of low speed and high precision[D]. Chengdu: University of Electronic Science and Technology of China, 2016(in Chinese).