留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间低速直驱伺服系统低频谐波电流分析与抑制

张鑫 王子婷 白超平 张帅 孙越强

张鑫,王子婷,白超平,等. 空间低速直驱伺服系统低频谐波电流分析与抑制[J]. 北京航空航天大学学报,2024,50(12):3603-3614 doi: 10.13700/j.bh.1001-5965.2022.0907
引用本文: 张鑫,王子婷,白超平,等. 空间低速直驱伺服系统低频谐波电流分析与抑制[J]. 北京航空航天大学学报,2024,50(12):3603-3614 doi: 10.13700/j.bh.1001-5965.2022.0907
ZHANG X,WANG Z T,BAI C P,et al. Analysis and suppression of low-frequency harmonic current in space low-speed direct-driven servo system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3603-3614 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0907
Citation: ZHANG X,WANG Z T,BAI C P,et al. Analysis and suppression of low-frequency harmonic current in space low-speed direct-driven servo system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3603-3614 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0907

空间低速直驱伺服系统低频谐波电流分析与抑制

doi: 10.13700/j.bh.1001-5965.2022.0907
详细信息
    通讯作者:

    E-mail:xinzhang@nssc.ac.cn

  • 中图分类号: V442

Analysis and suppression of low-frequency harmonic current in space low-speed direct-driven servo system

More Information
  • 摘要:

    电机直驱伺服系统输出力矩直接作用于负载,受芯片工艺缺陷、相电感及检测电路非对称、电机定子开槽等因素影响,相电流的一次、二次谐波和齿谐波直接影响电磁转矩的稳定性。为提升系统的低速平稳度,基于电机数学模型和系统传递函数,指出3类低频谐波的产生原因。针对一次谐波,提出一种中心电流电气角更新与机械角赋值算法(CC-EUMA),提高磁路非理想时的谐波抑制能力,针对二次谐波和齿谐波,提出转速环双准比例谐振控制算法(SL-DQPR),在滤除谐波的同时兼具抗扰能力强和调参难度低的优势。通过仿真和实验验证了所提2种算法的有效性。加入算法后,电机空载运行的跟踪误差降低了2/3,实现了系统在有限硬件资源开销下的平稳运行,为空间低速直驱伺服系统的低速控制提供了新思路。

     

  • 图 1  齿槽转矩作用下的双闭环伺服系统

    Figure 1.  Double closed loop servo system under action of cogging torque

    图 2  中心电流电气角更新与机械角赋值算法

    Figure 2.  Electrical angle update and mechanical angle assignment algorithm for center current

    图 3  转速环并联QPR控制器前后系统波特图

    Figure 3.  Baud diagram of system before and after parallel QPR controller in speed loop

    图 4  连续和离散QPR控制器波特图

    Figure 4.  Baud diagrams for continuous and discrete QPR controllers

    图 5  加入CC-EUMA算法前后相电流的仿真

    Figure 5.  Simulation of phase current before and after adding CC-EUMA algorithm

    图 6  加入CC-EUMA算法前后转速的仿真

    Figure 6.  Simulation of speed before and after adding CC-EUMA algorithm

    图 7  加入CC-EUMA算法前后转速FFT的仿真

    Figure 7.  Simulation of speed FFT before and after adding CC-EUMA algorithm

    图 8  加入SL-DQPR算法前后转速的仿真

    Figure 8.  Simulation of speed before and after adding SL-DQPR algorithm

    图 9  加入SL-DQPR算法前后转速FFT的仿真

    Figure 9.  Simulation of speed FFT before and after adding SL-DQPR algorithm

    图 10  空间低速直驱伺服系统实验平台

    Figure 10.  Experimental platform of space low speed direct-driven servo system

    图 11  PMSM空间低速直驱伺服系统控制架构

    Figure 11.  Control structure of PMSM space low-speed direct-driven servo system

    图 12  前后180°机械角下的A相拟合电流

    Figure 12.  A-phase fitted currents at front and rear 180°mechanical angles

    图 13  加入CC-EUMA算法前后相电流的实测图

    Figure 13.  Measured diagram of phase currents before and after adding CC-EUMA algorithm

    图 14  加入CC-EUMA算法前后转速与转速FFT的实测图

    Figure 14.  Measured diagram of speed and speed FFT before and after adding CC-EUMA algorithm

    图 15  高速与低速下的转速FFT

    Figure 15.  Speed FFT at high speed and low speed

    图 16  加入SL-DQPR算法前后转速与转速FFT的实测图

    Figure 16.  Measured diagram of speed and speed FFT before and after adding SL-DQPR algorithm

    表  1  连续和离散QPR控制器参数

    Table  1.   Continuous and discrete QPR controller parameters

    ${T_{\mathrm {s}}}$/ms ${k_{\mathrm {p}}}$ ${k_{\mathrm {r}}}$ ${f_1}$/Hz ${f_{{\mathrm{c}}1}}$/Hz ${f_2}$/Hz ${f_{{\mathrm{c}}2}}$/Hz
    0.2 1 20 2 0.1 15 0.75
    下载: 导出CSV

    表  2  PMSM仿真参数

    Table  2.   PMSM simulation parameters

    ${T_{\mathrm {e}}}$/(N·m) $J$/(kg·m2) $L$/mH $R$/Ω $p/$对
    01.48×10−52.31.661
    下载: 导出CSV

    表  3  SVPWM仿真参数

    Table  3.   SVPWM simulation parameters

    ${U_{{\mathrm {dc}}}}$/V $T$/μs ${T_{\mathrm {s}}}$/μs ${T_{\mathrm {d}}}$/μs
    122000.20.2
    下载: 导出CSV
  • [1] 翟少雄, 王长胜, 谭立, 等. 空间高精度扫描伺服系统的驱动控制[J]. 光学精密工程, 2016, 24(5): 1104-1111. doi: 10.3788/OPE.20162405.1104

    ZHAI S X, WANG C S, TAN L, et al. Driving and controlling of high accuracy scanning servo-system in space[J]. Optics and Precision Engineering, 2016, 24(5): 1104-1111(in Chinese). doi: 10.3788/OPE.20162405.1104
    [2] XIA X Q, ZHANG B, LI X T. High precision low-speed control for permanent magnet synchronous motor[J]. Sensors, 2020, 20(5): 1526. doi: 10.3390/s20051526
    [3] ZHU C, ZENG Z Y, ZHAO R X. Torque ripple elimination based on inverter voltage drop compensation for a three-phase four-switch inverter-fed PMSM drive under low speeds[J]. IET Power Electronics, 2017, 10(12): 1430-1437.
    [4] PEYGHAMBARI A, DASTFAN A, AHMADYFARD A. Selective voltage noise cancellation in three-phase inverter using random SVPWM[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4604-4610.
    [5] 李帅, 孙立志, 刘兴亚, 等. 永磁同步电机电流谐波抑制策略[J]. 电工技术学报, 2019, 34(S1): 87-96.

    LI S, SUN L Z, LIU X Y, et al. Current harmonics suppression strategies of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 87-96(in Chinese).
    [6] DAJAKU G, GERLING D. A novel 12-teeth/10-poles PM machine with flux barriers in stator yoke[C]//Proceedings of the 20th International Conference on Electrical Machines. Piscataway: IEEE Press, 2012: 36-40.
    [7] 罗正豪, 柳霖, 井立兵. 新型Halbach阵列永磁电机谐波分析与优化[J]. 微特电机, 2017, 45(11): 19-22. doi: 10.3969/j.issn.1004-7018.2017.11.005

    LUO Z H, LIU L, JING L B. Harmonic analysis and optimization of a novel halbach array permanent magnet motor[J]. Small & Special Electrical Machines, 2017, 45(11): 19-22(in Chinese). doi: 10.3969/j.issn.1004-7018.2017.11.005
    [8] 王明星, 王爱元, 李轶华. 一种优化齿槽转矩抑制永磁同步电机振动和噪声的方法[J]. 电机与控制应用, 2017, 44(2): 110-114. doi: 10.3969/j.issn.1673-6540.2017.02.020

    WANG M X, WANG A Y, LI Y H. A way of optimizing cogging torque to reduce vibration and noise for permanent magnet synchronous motor[J]. Electric Machines & Control Application, 2017, 44(2): 110-114(in Chinese). doi: 10.3969/j.issn.1673-6540.2017.02.020
    [9] TANG Z Y, AKIN B. Suppression of dead-time distortion through revised repetitive controller in PMSM drives[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 918-930. doi: 10.1109/TEC.2017.2679701
    [10] 廖勇, 甄帅, 刘刃, 等. 用谐波注入抑制永磁同步电机转矩脉动[J]. 中国电机工程学报, 2011, 31(21): 119-127.

    LIAO Y, ZHEN S, LIU R, et al. Torque ripple suppression of permanent magnet synchronous motor by the harmonic injection[J]. Proceedings of the CSEE, 2011, 31(21): 119-127(in Chinese).
    [11] 樊明迪, 林辉, 吕帅帅. 一种抑制PMSM-DTC周期性转速脉动的方法[J]. 电机与控制学报, 2013, 17(9): 73-78. doi: 10.3969/j.issn.1007-449X.2013.09.011

    FAN M D, LIN H, LÜ S S. Method to reduce periodical speed ripple in PMSM-DTC system[J]. Electric Machines and Control, 2013, 17(9): 73-78(in Chinese). doi: 10.3969/j.issn.1007-449X.2013.09.011
    [12] QU J Z, ZHANG C N, JATSKEVICH J, et al. Deadbeat harmonic current control of permanent magnet synchronous machine drives for torque ripple reduction[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(3): 3357-3370. doi: 10.1109/JESTPE.2021.3062833
    [13] 张志忠, 王强, 陆永平. 无刷直流电动机系统的波动力矩抑制方法[J]. 微特电机, 1998(5): 11-13.

    ZHANG Z Z, WANG Q, LU Y P. Methods of suppressing ripple torque of the BLDC motor system[J]. Small & Special Electrical Machines, 1998(5): 11-13(in Chinese).
    [14] 赵辉, 冯英浚, 张志忠, 等. 神经网络用于永磁同步电机系统波动力矩补偿[J]. 哈尔滨工业大学学报, 2003, 35(1): 5-7. doi: 10.3321/j.issn:0367-6234.2003.01.002

    ZHAO H, FENG Y J, ZHANG Z Z, et al. Application of neural network for ripple torque compensation of permanent magnet synchronous motor system[J]. Journal of Harbin Institute of Technology, 2003, 35(1): 5-7(in Chinese). doi: 10.3321/j.issn:0367-6234.2003.01.002
    [15] AHN H S, CHEN Y Q, DOU H F. State-periodic adaptive compensation of cogging and Coulomb friction in permanent-magnet linear motors[J]. IEEE Transactions on Magnetics, 2005, 41(1): 90-98. doi: 10.1109/TMAG.2004.840182
    [16] 莫会成. 永磁交流伺服电动机转矩波动分析[J]. 微电机, 2007, 40(3): 1-4. doi: 10.3969/j.issn.1001-6848.2007.03.001

    MO H C. Analysis of permanet-magent AC servo motor torque ripple[J]. Micromotors, 2007, 40(3): 1-4(in Chinese). doi: 10.3969/j.issn.1001-6848.2007.03.001
    [17] 王秀和. 电机学[M]. 3版. 北京: 机械工业出版社, 2019: 391.

    WANG X H. Electric machinery[M]. 3rd ed. Beijing: China Machine Press, 2019: 391(in Chinese).
    [18] 扈建龙. 面向传动装置的电驱动系统振动噪声机理与抑制方法研究[D]. 长春: 吉林大学, 2019.

    HU J L. Study on vibration and noise mechanism and suppression method of electric drive system oriented to transmission device[D]. Changchun: Jilin University, 2019(in Chinese).
    [19] 杨浩东. 永磁同步电机电磁振动分析[D]. 杭州: 浙江大学, 2011.

    YANG H D. Electromagnetic vibration analysis of permanent magnet synchronous motor[D]. Hangzhou: Zhejiang University, 2011(in Chinese).
    [20] GÜEMES J A, IRAOLAGOITIA A M, FERNÁNDEZ P, et al. Comparative study of PMSM with integer-slot and fractional-slot windings[C]//Proceedings of the 19th International Conference on Electrical Machines. Piscataway: IEEE Press, 2010: 1-6.
    [21] 王成元, 夏加宽, 孙宜标. 现代电机控制技术[M]. 2版. 北京: 机械工业出版社, 2014: 252.

    WANG C Y, XIA J K, SUN Y B. Modern control technology for electric machines[M]. 2nd ed. Beijing: China Machine Press, 2014: 252(in Chinese).
    [22] 张文海, 李家会, 徐丽. 永磁直流力矩电机力矩波动的实验分析[J]. 微电机, 2004, 37(6): 64-66.

    ZHANG W H, LI J H, XU L. Experimental analysis of torque fluctuation of permanent magnet DC torque motor[J]. Micromotors, 2004, 37(6): 64-66(in Chinese).
    [23] 潘玉玲. 分数槽集中绕组永磁同步电机电枢反应对永磁体影响分析[D]. 天津: 天津大学, 2010.

    PAN Y L. Analysis of the influence of armature reaction of fractional slot concentrated winding permanent magnet synchronous motor on permanent magnet[D]. Tianjin: Tianjin University, 2010(in Chinese).
    [24] 何芝强. PID控制器参数整定方法及其应用研究[D]. 杭州: 浙江大学, 2005.

    HE Z Q. Research on parameter tuning method of PID controller and its application[D]. Hangzhou: Zhejiang University, 2005(in Chinese).
    [25] 陈娟. 伺服系统低速特性与抖动补偿研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2001.

    CHEN J. Research on low-speed characteristics and jitter compensation of servo system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2001(in Chinese).
    [26] XIA C L, JI B N, YAN Y. Smooth speed control for low-speed high-torque permanent-magnet synchronous motor using proportional-integral-resonant controller[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2123-2134. doi: 10.1109/TIE.2014.2354593
    [27] 黎安庆. 低速高精度条件下的伺服控制系统设计[D]. 成都: 电子科技大学, 2016.

    LI A Q. Design of servo control system under the condition of low speed and high precision[D]. Chengdu: University of Electronic Science and Technology of China, 2016(in Chinese).
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  87
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-06
  • 录用日期:  2023-04-06
  • 网络出版日期:  2023-05-06
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答