留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

操纵方式对翼伞系统雀降性能的影响

程杨 仇博文 余莉 李岩军 曹皓然

程杨,仇博文,余莉,等. 操纵方式对翼伞系统雀降性能的影响[J]. 北京航空航天大学学报,2024,50(12):3940-3946 doi: 10.13700/j.bh.1001-5965.2022.0914
引用本文: 程杨,仇博文,余莉,等. 操纵方式对翼伞系统雀降性能的影响[J]. 北京航空航天大学学报,2024,50(12):3940-3946 doi: 10.13700/j.bh.1001-5965.2022.0914
CHENG Y,QIU B W,YU L,et al. Influence of maneuvering modes on flared landing performance of parafoil system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3940-3946 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0914
Citation: CHENG Y,QIU B W,YU L,et al. Influence of maneuvering modes on flared landing performance of parafoil system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3940-3946 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0914

操纵方式对翼伞系统雀降性能的影响

doi: 10.13700/j.bh.1001-5965.2022.0914
基金项目: 国家自然科学基金(11972192)
详细信息
    通讯作者:

    E-mail:yuli_happy@163.com

  • 中图分类号: V224.2

Influence of maneuvering modes on flared landing performance of parafoil system

Funds: National Natural Science Foundation of China (11972192)
More Information
  • 摘要:

    为获得操纵方式对翼伞系统雀降性能的影响规律,建立了翼伞系统两体9自由度动力学模型,采用龙格库塔法进行了动力学编程计算,系统速度、翼伞及载荷姿态的数值结果和文献规律一致,最大误差为8.2%。开展了分级操纵及操纵速度对翼伞系统雀降性能的影响研究,得到了翼伞最小水平速度、最小垂直速度及最大迎角的变化规律。研究结果表明:一次操纵的雀降性能优于分级操纵;操纵时间过长或过短均会导致垂直速度增加;采用“先快后慢”和“匀速下拉”均能保证良好的雀降性能,操纵速度的选择应同时考虑最小垂直速度及翼伞飞行的稳定性。

     

  • 图 1  翼伞系统基本坐标系示意图

    Figure 1.  Basic coordinate system of parafoil system

    图 2  翼伞气动特性曲线

    Figure 2.  Aerodynamic characteristic curves of parafoil

    图 3  模型和文献结果对比

    Figure 3.  Comparison of model and results in literature

    图 4  分级操纵工况

    Figure 4.  Hierarchical maneuvering conditions

    图 5  不同分级操纵制动量下翼伞水平速度变化

    Figure 5.  Variation of horizontal velocity of parafoil under different hierarchical maneuvering conditions

    图 6  不同分级操纵制动量下翼伞垂直速度变化

    Figure 6.  Variation of vertical velocity of parafoil under different hierarchical maneuvering conditions

    图 7  不同分级操纵制动量下翼伞迎角变化

    Figure 7.  Variation of angle of attack of parafoil under different hierarchical maneuvering conditions

    图 8  匀速下拉时翼伞速度、攻角最值随操纵时长变化

    Figure 8.  Variation of velocity and angle of attack of parafoil with maneuvering durations under constant velocity

    图 9  变速下拉时操纵速度变化率对翼伞速度、攻角最值的影响

    Figure 9.  Influence of variation of maneuvering velocity on velocity and angle of attack of parafoil under changin velocity

    表  1  翼伞系统结构参数

    Table  1.   Structural parameters of parafoil system

    展长
    b/m
    弦长
    c/m
    切口高度
    e/m
    翼伞质量
    mp/kg
    载荷质量
    m
    b/kg
    伞衣有效
    面积Sp/m2
    载荷有效
    面积Sb/m2
    翼伞中心与系统
    质心距离Rp/m
    载荷中心与系统
    质心距离Rb/m
    安装角
    μ/(°)
    7.5 3.75 0.675 5 135 28 0.5 −7.5 0.5 9
    下载: 导出CSV

    表  2  初始运动状态参数

    Table  2.   Initial motion state parameters

    uc,vc,wc)/(m·s−1 (${\varphi _{\mathrm{p}}},{\theta _{\mathrm{p}}},{\phi _{\mathrm{p}}}$)/(°) (x,y,z)/m
    (10.5,0,3.5) (0,−10,0) (0,0,−1000
    下载: 导出CSV

    表  3  本文和文献翼伞系统稳定运动特性对比

    Table  3.   Comparison of stable motion characteristics of parafoil systems in this paper and in literature

    运动阶段 uc/(m·s−1 uc本文相对
    文献误差/%
    wc/(m·s−1 wc本文相对
    文献误差/%
    滑翔比 滑翔比本文相对
    文献误差/%
    文献 本文 文献 本文 文献 本文
    滑翔阶段
    (0~5 s, 50~60 s)
    10.50 10.52 0.2 3.50 3.53 0.9 3.00 2.98 0.7
    雀降阶段
    (20~30 s)
    5.25 5.31 1.1 7.20 6.75 6.3 0.73 0.79 8.2
    下载: 导出CSV

    表  4  不同操纵方式下翼伞速度、迎角最值

    Table  4.   Extreme values of velocity and angle of attack of parafoil under different maneuvering conditions

    操纵方式 $ {u_{\min }} $/(m·s−1 $ {w_{\min }} $/(m·s−1 $ {\alpha _{\max }} $/(°)
    0制动(一次操纵) 4.33 2.22 40.18
    25%制动 4.48 2.48 39.69
    50%制动 4.6 2.73 39.14
    75%制动 4.76 3 38.07
    下载: 导出CSV

    表  5  操纵方式对比工况

    Table  5.   Comparison of maneuvering conditions

    操纵方式$\Delta t$/ss
    匀速下拉0.5,1,2,3,4,51
    先快后慢30.25,0.4,0.5,0.6,0.75
    先慢后快31.5,2,2.5,3,3.5
    下载: 导出CSV
  • [1] 赵秋艳. 翼伞雀降技术[J]. 航天返回与遥感, 1999(2): 5-9.

    ZHAO Q Y. Parafoil bird landing technology[J]. Space Return and Remote Sensing, 1999(2): 5-9 (in Chinese).
    [2] 王利荣. 降落伞理论与应用[M]. 北京:宇航出版社, 1997: 528-530.

    WANG L R. Parachute theory and application[M]. Beijing: Aerospace Press, 1997: 528-530 (in Chinese).
    [3] 赵培尧. 单层翼伞回收末段飞行特性研究[D]. 北京: 北京理工大学, 2017: 59-63.

    ZHAO P Y. Study on flight characteristics of recovery terminal of single-layer parafoil[D]. Beijing: Beijing Institute of Technology, 2017: 59-63 (in Chinese).
    [4] 余莉. 气动减速技术[M]. 北京: 科学出版社, 2018: 273-276.

    YU L. Aerodynamic deceleration technology[M]. Beijing: Science Press, 2018: 273-276 (in Chinese).
    [5] SLEGERS N, GORMAN C. Comparison and analysis of multi-body parafoil models with varying degrees of freedom[C]// 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2011: 2615.
    [6] TAN P L, SUN M W, SUN Q L, et al. Dynamic modeling and experimental verification of powered parafoil with two suspending points[J]. IEEE Access, 2020, 8: 12955-12966. doi: 10.1109/ACCESS.2020.2965541
    [7] GOODRICK T. Simulation studies of the flight dynamics of gliding parachute systems[C]// 6th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1979: 417.
    [8] GOODRICK T. Comparison of simulation and experimental data for a gliding parachute in dynamic flight[C]// 7th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1981: 1924.
    [9] 常冠清, 张泽, 仇海涛, 等. 翼伞系统动力学建模与仿真研究[J]. 导航与控制, 2016, 15(6): 33-40.

    CHANG G Q, ZHANG Z, QIU H T, et al. Dynamic modeling and simulation of parafoil aerial delivery system[J]. Navigation and Control, 2016, 15(6): 33-40 (in Chinese).
    [10] ZHANG Z X, ZHAO Z N, FU Y L. Dynamics analysis and simulation of six DOF parafoil system[J]. Cluster Computing, 2019, 22(5): 12669-12680.
    [11] 张兴会, 朱二琳. 翼伞系统雀降性能及控制研究[J]. 航天控制, 2012, 30(1): 29-32.

    ZHANG X H, ZHU E L. The study of the flare-landing performance and control of parafoil system[J]. Aerospace Control, 2012, 30(1): 29-32 (in Chinese).
    [12] OCHI Y. Modeling and simulation of flight dynamics of a relative-roll-type parafoil[C]// AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1643.
    [13] GANG Y. Nine-degree of freedom modeling and flight dynamic analysis of parafoil aerial delivery system[J]. Procedia Engineering, 2015, 99: 866-872. doi: 10.1016/j.proeng.2014.12.614
    [14] SLEGERS N, COSTELLO M. Aspects of control for a parafoil and payload system[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(6): 898-905. doi: 10.2514/2.6933
    [15] MORIYOSHI T, YAMADA K, NISHIDA H. The effect of rigging angle on longitudinal direction motion of parafoil-type vehicle: basic stability analysis and wind tunnel test[J/OL]. International Journal of Aerospace Engineering, 2020: 8861714 (2020-12-07)[2022-10-11]. https://doi.org/10.1155/2020/8861714.
    [16] 张晓今. 航天器可控翼伞回收系统雀降性能研究[J]. 国防科技大学学报, 1996, 18(2): 5.

    ZHANG X J. Research on lark landing performance of spacecraft controllable parafoil recovery system[J]. Journal of National University of Defense Technology, 1996, 18(2): 5 (in Chinese).
    [17] MÜLLER S, WAGNER O, SACHS G. A high-fidelity nonlinear multibody simulation model for parafoil systems[C]// 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003: 2120.
    [18] PRAKASH O, ANANTHKRISHNAN N. Modeling and simulation of 9-DOF parafoil-payload system flight dynamics[C]// AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2006: 6130.
    [19] VISHNIAK A. Simulation of the payload-parachute-wing system flight dynamics[C]// Aerospace Design Conference. Reston: AIAA, 1993: 1250.
    [20] PRAKASH O, DAFTARY A, ANANTHKRISHNAN N. Trim and stability analysis of parafoil/payload system using bifurcation methods[C]// 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005: 1666.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  89
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 录用日期:  2022-12-19
  • 网络出版日期:  2023-01-03
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答