留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Maxwell改进模型的气动人工肌肉迟滞特性

张业明 金公华 石岩 虞启辉 孔德民 和双洋

张业明,金公华,石岩,等. 基于Maxwell改进模型的气动人工肌肉迟滞特性[J]. 北京航空航天大学学报,2024,50(12):3686-3695 doi: 10.13700/j.bh.1001-5965.2022.0917
引用本文: 张业明,金公华,石岩,等. 基于Maxwell改进模型的气动人工肌肉迟滞特性[J]. 北京航空航天大学学报,2024,50(12):3686-3695 doi: 10.13700/j.bh.1001-5965.2022.0917
ZHANG Y M,JIN G H,SHI Y,et al. Hysteresis characteristics of pneumatic artificial muscle based on improved Maxwell model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3686-3695 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0917
Citation: ZHANG Y M,JIN G H,SHI Y,et al. Hysteresis characteristics of pneumatic artificial muscle based on improved Maxwell model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3686-3695 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0917

基于Maxwell改进模型的气动人工肌肉迟滞特性

doi: 10.13700/j.bh.1001-5965.2022.0917
基金项目: 北京高等学校卓越青年科学家计划(BJJWZYJH01201910006021);流体动力与机电系统国家重点实验室开放基金课题(GZKF-202016);基础计划加强重点基础研究项目子课题(2019-JCJQ-ZD-120-13);河南省科技攻关计划(202102210081,212102210050);河南理工大学研究生教育教学改革项目(2021YJ04)
详细信息
    通讯作者:

    E-mail:yesoyou@gmail.com

  • 中图分类号: TH138;TP273.1

Hysteresis characteristics of pneumatic artificial muscle based on improved Maxwell model

Funds: Outstanding Young Scientists Program of Beijing Higher Education Institutions (BJJWZYJH01201910006021); Open Foundation of the State Key Laboratory of Fluid Power & Mechatronic Systems (GZKF-202016); Sub Project of Key Basic Research Projects under the Basic Strengthening Plan (2019-JCJQ-ZD-120-13); Science and Technology Research Project of Henan Province (202102210081, 212102210050); Graduate Education and Teaching Reform Project of Henan Polytechnic University (2021YJ04)
More Information
  • 摘要:

    针对气动人工肌肉非线性程度高、迟滞模型建立困难的问题,研究了气动人工肌肉的迟滞特性,提出了一种基于滑移算子的改进Maxwell模型。搭建了气动人工肌肉的收缩力测试平台,进行了静态力实验和动态力实验,得到了气动人工肌肉的迟滞力曲线,并分别考虑了不同行程、不同充气压力和不同伸缩速率对迟滞环的影响,得到了气动人工肌肉的各项迟滞特性。针对传统Maxwell模型无法很好地表现气动人工肌肉的非对称迟滞特性,将迟滞力曲线分别从上部和下部收缩,得到的各项算子较好地表现了气动人工肌肉收缩力曲线的非局部记忆性和非对称性,将最大误差控制在了6.8%以内,中段误差控制在了2.0%以内,较好地匹配了实验曲线,验证了所提模型的普适性。

     

  • 图 1  Maxwell滑移模型结构

    Figure 1.  Structure of Maxwell slip model

    图 2  Mxwell算子模型

    Figure 2.  Maxwell operator model

    图 3  等长实验平台实物图

    Figure 3.  Physical image of isometric test platform

    图 4  等长实验原理

    Figure 4.  Isometric test principle

    图 5  等长实验的压强与收缩力关系

    Figure 5.  Relationship between pressure and contraction force in isometric test

    图 6  等长实验拟合结果

    Figure 6.  Fitting results of isometric test

    图 7  等压实验平台实物图

    Figure 7.  Physical image of isobaric test platform

    图 8  等压实验原理

    Figure 8.  Isobaric test principle

    图 9  等压实验去程/回程总线

    Figure 9.  Outbound/return bus under isobaric test

    图 10  迟滞力/长度迟滞总线

    Figure 10.  Hysteresis force and length hysteresis curves

    图 11  不同充气压力下的迟滞曲线

    Figure 11.  Hysteresis curves under different inflation pressures

    图 12  不同伸缩量下的迟滞曲线

    Figure 12.  Hysteresis curves under different expansions

    图 13  不同伸缩速率下的迟滞曲线

    Figure 13.  Hysteresis curves under different expansion rates

    图 14  基于原始曲线的Maxwell算子参数

    Figure 14.  Maxwell operator parameters based on original curve

    图 15  Maxwell曲线拟合结果

    Figure 15.  Maxwell curve fitting results

    图 16  0.40 MPa充气压力下的拟合情况

    Figure 16.  Fitting situation at inflation pressure of 0.40 MPa

    表  1  等长实验主要元件

    Table  1.   Main element of isometric test

    元件名称 元件型号 主要性能指标
    气动人工肌肉 DSMP-10-300N-RM-RM 初始长度300 mm,最大抗拉力600 N
    数据采集卡 NI PCIE-6353 16位计数器,输出电压−10~10 V
    拉力传感器 NTJL-1 0~500 N
    空气压缩机 HX750A 最大供气压力1 MPa
    压力传感器 MIK-P300 测量范围−0.1~60 MPa
    比例方向控制阀 FESTO MPYE-5-M5-010-B 最大工作压力:1 MPa
    位移传感器 PANASONIC HG-C1200 测量范围0~40 mm,精度0.01 mm
    下载: 导出CSV

    表  2  参数拟合结果

    Table  2.   Parameter fitting results

    $ P/\mathrm{\rm{M}Pa} $ $ \alpha (P) $ $ \beta (P) $ $ \gamma (P) $ $ \lambda (P) $
    0.25 0.0336 −28.703 8188.214 779376.024
    0.3 0.0262 −22.197 6276.948 592287.396
    0.35 0.00994 −8.201 2259.785 207967.509
    0.4 0.00785 −6.431 1760.549 161040.129
    0.45 0.0057 −4.619 1252.389 113560.093
    0.5 0.0047 −3.808 1033.544 93900.544
    下载: 导出CSV

    表  3  滑移算子的代表性参数

    Table  3.   Representative parameters of slip operators

    参数 数值 参数 数值
    k1 4.0797 w1 18.3585
    k2 1.3121 w2 5.9045
    k3 0.7226 w3 3.252
    k4 0.4981 w4 2.2415
    k5 0.0541 w5 0.2435
    k6 4.8055 w6 21.625
    k7 0.5834 w7 2.6225
    k8 0.6996 w8 3.148
    k9 0.4940 w9 2.223
    k10 0.0841 w10 0.3748
    下载: 导出CSV
  • [1] TSAGARAKIS N G, CALDWELL D G. Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training[J]. Autonomous Robots, 2003, 15(1): 21-33. doi: 10.1023/A:1024484615192
    [2] 周彬滨, 邹任玲. 气动人工肌肉在康复器械中的应用现状[J]. 中国康复理论与实践, 2020, 26(4): 463-466. doi: 10.3969/j.issn.1006-9771.2020.04.014

    ZHOU B B, ZOU R L. Application of pneumatic artificial muscle in rehabilitation equipment (review)[J]. Chinese Journal of Rehabilitation Theory and Practice, 2020, 26(4): 463-466(in Chinese). doi: 10.3969/j.issn.1006-9771.2020.04.014
    [3] 高建文, 梁全, 刘慧芳. 气动人工肌肉静态特性实验及模型仿真研究[J]. 机床与液压, 2019, 47(1): 9-11. doi: 10.3969/j.issn.1001-3881.2019.01.003

    GAO J W, LIANG Q, LIU H F. Static characteristic experiments and model simulation of pneumatic muscle actuator[J]. Machine Tool & Hydraulics, 2019, 47(1): 9-11(in Chinese). doi: 10.3969/j.issn.1001-3881.2019.01.003
    [4] INOUE K. Rubbertuators and applications for robots[M]. Cambridge: MIT Press, 1988.
    [5] CHOU C P, HANNAFORD B. Measurement and modeling of McKibben pneumatic artificial muscles[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 90-102.
    [6] 陈轶珩. 单气动人工肌肉系统的非线性控制[D]. 天津: 南开大学, 2021.

    CHEN Y H. Nonlinear control of single pneumatic artificial muscle systems[D]. Tianjin: Nankai University, 2021(in Chinese).
    [7] 孙建民, 赵国浩, 刘祥, 等. 基于气动人工肌肉理论的半主动空气悬架研究[J]. 浙江工业大学学报, 2022, 50(3): 276-283. doi: 10.3969/j.issn.1006-4303.2022.03.006

    SUN J M, ZHAO G H, LIU X, et al. Research on thesemi-active control air suspension basedon the pneumatic artificial muscle theory[J]. Journal of Zhejiang University of Technology, 2022, 50(3): 276-283(in Chinese). doi: 10.3969/j.issn.1006-4303.2022.03.006
    [8] 孙丽娜, 毕庆. 基于改进模型的气动肌肉神经网络串级控制[J]. 机床与液压, 2018, 46(7): 82-85. doi: 10.3969/j.issn.1001-3881.2018.07.018

    SUN L N, BI Q. Neural network cascade control of pneumatic artificial muscles based on modified model[J]. Machine Tool & Hydraulics, 2018, 46(7): 82-85(in Chinese). doi: 10.3969/j.issn.1001-3881.2018.07.018
    [9] 郭振武, 黄继清, 王飞洋, 等. McKibben型气动肌肉模型改进与性能测试[J]. 中国机械工程, 2019, 30(19): 2313-2318. doi: 10.3969/j.issn.1004-132X.2019.19.007

    GUO Z W, HUANG J Q, WANG F Y, et al. Improvement and performance testing of McKibben pneumatic muscle model[J]. China Mechanical Engineering, 2019, 30(19): 2313-2318(in Chinese). doi: 10.3969/j.issn.1004-132X.2019.19.007
    [10] RAMOS J, LYNCH S, JONES D, et al. Hysteresis in muscle[J]. International Journal of Bifurcation and Chaos, 2017, 27(1): 1730003. doi: 10.1142/S0218127417300038
    [11] WANG K, ZHANG Y, JONES R W. The modelling of hysteresis in magnetorheological dampers using a generalised Prandtl-Ishlinskii approach[C]//Proceedings of the Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2011: 437-442.
    [12] 李超, 刘成, 于飞, 等. 一种压电陶瓷建模与控制的新方法[J]. 航天返回与遥感, 2021, 42(1): 100-107. doi: 10.3969/j.issn.1009-8518.2021.01.012

    LI C, LIU C, YU F, et al. A new method for hysteresis modeling and control of piezoelectric ceramics[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(1): 100-107(in Chinese). doi: 10.3969/j.issn.1009-8518.2021.01.012
    [13] 龚瑾, 龚云琪, 梅顺齐. 炭黑/液体硅橡胶复合材料的迟滞性和拉伸响应特性[J]. 仪表技术与传感器, 2020(4): 15-19. doi: 10.3969/j.issn.1002-1841.2020.04.004

    GONG J, GONG Y Q, MEI S Q. Hysteresis and tensile response characteristics of carbon black/liquid silicone rubber composites[J]. Instrument Technique and Sensor, 2020(4): 15-19(in Chinese). doi: 10.3969/j.issn.1002-1841.2020.04.004
    [14] 付婵君. 非对称迟滞建模与迟滞系统辨识方法研究[D]. 泉州: 华侨大学, 2016: 2-10.

    FU C J. Research on asymmetric hysteresis modeling and hysteresis system identification method[D]. Quanzhou: Huaqiao University, 2016: 2-10(in Chinese) .
    [15] 谢胜龙, 刘海涛, 梅江平. 气动人工肌肉迟滞-蠕变特性研究现状与进展[J]. 系统仿真学报, 2018, 30(3): 809-823.

    XIE S L, LIU H T, MEI J P. Achievements and developments of hysteresis and creep of pneumatic artificial muscles[J]. Journal of System Simulation, 2018, 30(3): 809-823(in Chinese).
    [16] VO-MINH T, TJAHJOWIDODO T, RAMON H, et al. A new approach to modeling hysteresis in a pneumatic artificial muscle using the Maxwell-slip model[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(1): 177-186. doi: 10.1109/TMECH.2009.2038373
    [17] MINH T V, KAMERS B, RAMON H, et al. Modeling and control of a pneumatic artificial muscle manipulator joint–Part I: Modeling of a pneumatic artificial muscle manipulator joint with accounting for creep effect[J]. Mechatronics, 2012, 22(7): 923-933.
    [18] VAN DAMME M, BEYL P, VANDERBORGHT B, et al. Modeling hysteresis in pleated pneumatic artificial muscles[C]//Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics. Piscataway: IEEE Press, 2008: 471-476.
    [19] ZANG X Z, LIU Y X, HENG S, et al. Position control of a single pneumatic artificial muscle with hysteresis compensation based on modified Prandtl-Ishlinskii model[J]. Bio-Medical Materials and Engineering, 2017, 28(2): 131-140. doi: 10.3233/BME-171662
    [20] XIE S L, LIU H T, WANG Y. A method for the length-pressure hysteresis modeling of pneumatic artificial muscles[J]. Science China Technological Sciences, 2020, 63(5): 829-837. doi: 10.1007/s11431-019-9554-y
    [21] ZHAO J, ZHONG J, FAN J Z. Position control of a pneumatic muscle actuator using RBF neural network tuned PID controller[J]. Mathematical Problems in Engineering, 2015, 2015: 810231.
    [22] ZHONG J, FAN J Z, ZHU Y H, et al. One nonlinear PID control to improve the control performance of a manipulator actuated by a pneumatic muscle actuator[J]. Advances in Mechanical Engineering, 2014, 6: 172782. doi: 10.1155/2014/172782
    [23] 魏琼, 陆浩, 刘伟恒, 等. 双阀气动伺服系统的LuGre摩擦模型补偿研究[J]. 机械科学与技术, 2023, 42(10): 1609-1616.

    WEI Q, LU H, LIU W H, et al. Research on LuGre friction model compensation of dual-valve pneumatic servo system[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1609-1616(in Chinese).
    [24] SWEVERS J, AL-BENDER F, GANSEMAN C G, et al. An integrated friction model structure with improved presliding behavior for accurate friction compensation[J]. IEEE Transactions on Automatic Control, 2000, 45(4): 675-686.
    [25] RUDERMAN M. Presliding hysteresis damping of LuGre and Maxwell-slip friction models[J]. Mechatronics, 2015, 30: 225-230.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  63
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 录用日期:  2023-04-09
  • 网络出版日期:  2023-04-21
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答