留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间可重复机械锁紧及电磁解锁机构设计与分析

耿智伟 张杰 孔宁 马帅 王波 韩润奇

耿智伟,张杰,孔宁,等. 空间可重复机械锁紧及电磁解锁机构设计与分析[J]. 北京航空航天大学学报,2024,50(12):3947-3956 doi: 10.13700/j.bh.1001-5965.2022.0918
引用本文: 耿智伟,张杰,孔宁,等. 空间可重复机械锁紧及电磁解锁机构设计与分析[J]. 北京航空航天大学学报,2024,50(12):3947-3956 doi: 10.13700/j.bh.1001-5965.2022.0918
GENG Z W,ZHANG J,KONG N,et al. Design and analysis of space repeatable mechanical locking and electromagnetic unlocking mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3947-3956 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0918
Citation: GENG Z W,ZHANG J,KONG N,et al. Design and analysis of space repeatable mechanical locking and electromagnetic unlocking mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3947-3956 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0918

空间可重复机械锁紧及电磁解锁机构设计与分析

doi: 10.13700/j.bh.1001-5965.2022.0918
基金项目: 国家自然科学基金(51605026)
详细信息
    通讯作者:

    E-mail:kongning@ustb.edu.cn

  • 中图分类号: V423.6

Design and analysis of space repeatable mechanical locking and electromagnetic unlocking mechanisms

Funds: National Natural Science Foundation of China (51605026)
More Information
  • 摘要:

    针对空间航天器锁紧装置驱动链长、占用物理空间大的问题,结合摩擦自锁理论,设计了空间可重复机械锁紧及电磁解锁机构,利用多种有限元分析软件分别研究了机构的机械承载性能和电磁学性能。结果表明,在轴向最大锁紧承载工况下,锁紧珠与压板、顶杆、锁紧器外壳间的接触力随时间增加而线性增大,满足力的传递性准则和平衡准则,主要承载部件顶杆和锁紧珠所受的等效应力和变形量与时间呈线性关系,最大等效应力远小于材料的屈服极限强度,装置处于小变形范围。当线圈通入额定电流时,由于电阻发热效应,等电流密度的线圈内部出现稳定的欧姆损耗,电磁解锁装置内部近似为匀强磁场,铁芯的磁聚作用增强了端面的磁感应强度。对设计的空间可重复机械锁紧及电磁解锁机构进行样机制造,并进行原理验证,为空间在轨对接接口的可重复锁紧机构设计和分析提供理论参考。

     

  • 图 1  空间可重复锁紧机构及顶杆设计图

    Figure 1.  Design drawing of spatial repeatable locking mechanism and ejector rod

    图 2  电磁解锁装置尺寸设计

    Figure 2.  Size design of electromagnetic unlocking device

    图 3  改进后解锁线圈磁感应强度幅值云图及其变化曲线

    Figure 3.  Cloud chart and variation curve of the magnetic induction intensity amplitude of the improved unlock coil

    图 4  原构型及改进构型的解锁小线圈磁感应强度幅值变化曲线

    Figure 4.  Amplitude variation curve of magnetic induction intensity for unlocking small coils with original and improved configurations

    图 5  部件网格划分

    Figure 5.  Component grid division

    图 6  部件间接触力随时间变化规律

    Figure 6.  Variation of indirect contact force of components with time

    图 7  有限元模型应力云图及其变化规律

    Figure 7.  Stress cloud diagram of finite element model and its change law

    图 8  有限元模型变形云图及其变化规律

    Figure 8.  Deformation cloud diagram of finite element model and its change law

    图 9  电磁解锁装置电磁学仿真流程

    Figure 9.  Electromagnetic simulation flow of electromagnetic unlocking device

    图 10  电磁解锁装置电流密度变化规律及矢量云图

    Figure 10.  Current density change law and vector cloud diagram of electromagnetic unlocking device

    图 11  电磁解锁装置欧姆损耗沿中性面直线变化曲线

    Figure 11.  Ohmic loss curve of electromagnetic unlocking device along the straight line of neutral plane

    图 12  电磁解锁装置磁场及磁感应强度云图

    Figure 12.  Cloud diagram of magnetic field and magnetic induction intensity of electromagnetic unlocking device

    图 13  电磁解锁装置局部磁感应强度矢量云图及其沿直线变化规律

    Figure 13.  Vector cloud diagram of local magnetic induction intensity of electromagnetic unlocking device and its change law along the straight line

    图 14  样机零件

    Figure 14.  Prototype parts

    图 15  样机装配

    Figure 15.  Assembly of prototype

    图 16  样机工作过程

    Figure 16.  Working process of prototype

    表  1  铁芯构型参数改进

    Table  1.   Improvement of core configuration parameters

    铁芯构型 铁芯中心轴直径/mm
    原构型 5
    改进1 10
    改进2 13
    改进3 16
    下载: 导出CSV

    表  2  部件力学性能参数表

    Table  2.   Mechanical property parameters of components

    部件名称 弹性模量/GPa 泊松比 屈服强度/MPa
    锁紧珠 206 0.3 785
    其他部件 107.8 0.3 825
    下载: 导出CSV
  • [1] EBERLE S, FALLER R, OHNDORF A. On-orbit servicing mission operations at GSOC[C]// Proceedings of the SpaceOps 2010 Conference. Reston: AIAA, 2010.
    [2] HAYS A B, TCHORYK P, PAVLICH J C, et al. Advancements in design of an autonomous satellite docking system[C]//Spacecraft Platforms and Infrastructure. Washington: SPIE, 2004, 5419: 107-118.
    [3] VINALS J, URGOITI E, GUERRA G, et al. Multi-functional interface for flexibility and reconfigurability of future European space robotic systems[J]. Advances in Astronautics Science and Technology, 2018, 1(1): 119-133. doi: 10.1007/s42423-018-0009-1
    [4] MEDINA A, TOMASSINI A, SUATONI M, et al. Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft[J]. Acta Astronautica, 2017, 134: 1-10. doi: 10.1016/j.actaastro.2017.01.022
    [5] PEI J, MURCHISON L, STEWART V, et al. Autonomous rendezvous and docking of two 3U cubesats using a novel permanent-magnet docking mechanism[C]// Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
    [6] WOKES D, SMAIL S, PALMER P, et al. Pose estimation for In-orbit self-assembly of intelligent self-powered modules[C]// AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 6291.
    [7] RODGERS L, NOLET S, MILLER D W. Development of the miniature video docking sensor[C]// SPIE Proceedings of Modeling, Simulation, and Verification of Space-based Systems III. SPIE, 2006: 121-132.
    [8] 原永亮, 杨臻, 张秀华. 基于ADAMS某新型电磁对接机构结合过程分析[J]. 机械设计, 2016, 33(10): 51-54.

    YUAN Y L, YANG Z, ZHANG X H. Binding process analysis of a novel electromagnetic docking mechanism based on ADAMS[J]. Journal of Machine Design, 2016, 33(10): 51-54 (in Chinese).
    [9] FREDRICKSON S E, ABBOTT L W, DURAN S, et al. Mini AERCam: Development of a free-flying nanosatellite inspection robot[C]// Space Systems Technology and Operations. Washington: SPIE, 2003, 5088: 97-111.
    [10] FREDRICKSON S E, DURAN S, HOWARD N, et al. Application of the mini aercam free flyer for orbital inspection[C]//Spacecraft Platforms and Infrastructure. Washington: SPIE, 2004, 5419: 26-35.
    [11] 姜金鹏, 杨臻, 王昊东. 空间电磁柔性对接技术[J]. 兵器装备工程学报, 2021, 42(2): 63-67. doi: 10.11809/bqzbgcxb2021.02.012

    JIANG J P, YANG Z, WANG H D. Space electromagnetic flexible docking technology[J]. Journal of Ordnance Equipment Engineering, 2021, 42(2): 63-67 (in Chinese). doi: 10.11809/bqzbgcxb2021.02.012
    [12] 慕忠成, 叶东, 吴树范. 纳卫星电磁对接机构技术[J]. 北京航空航天大学学报, 2018, 44(12): 2644-2650.

    MU Z C, YE D, WU S F. Technology of electromagnetic docking mechanism using nanosatellites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2644-2650 (in Chinese).
    [13] KWON D W. Propellantless formation flight applications using electromagnetic satellite formations[J]. Acta Astronautica, 2010, 67(9): 1189-1201.
    [14] SCHWEIGHART S A, SEDWICK R J. Explicit dipole trajectory solution for electromagnetically controlled spacecraft clusters[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1225-1235. doi: 10.2514/1.46363
    [15] 侯振东, 曹喜滨, 张锦绣. 近地轨道电磁编队飞行相对轨道动力学建模[J]. 哈尔滨工业大学学报, 2012, 44(3): 6-12. doi: 10.11918/j.issn.0367-6234.2012.03.002

    HOU Z D, CAO X B, ZHANG J X. Relative orbital dynamics to LEO electromagnetic formation flying[J]. Journal of Harbin Institute of Technology, 2012, 44(3): 6-12 (in Chinese). doi: 10.11918/j.issn.0367-6234.2012.03.002
    [16] SOLTANPOUR M R, KHOOBAN M H, KHALGHANI M R. An optimal and intelligent control strategy for a class of nonlinear systems: adaptive fuzzy sliding mode[J]. Journal of Vibration and Control, 2016, 22(1): 159-175. doi: 10.1177/1077546314526920
    [17] MA Y C, JIN S J, GU N N. Decentralised memory static output feedback control for the nonlinear time-delay similar interconnected systems[J]. International Journal of Systems Science, 2016, 47(10): 2487-2498. doi: 10.1080/00207721.2014.999264
    [18] 王昊东, 杨臻, 武国梁. 基于ADAMS的卫星对接机构球锁装置动力学分析[J]. 兵器装备工程学报, 2019, 40(10): 45-49. doi: 10.11809/bqzbgcxb2019.10.010

    WANG H D, YANG Z, WU G L. Dynamic analysis of ball locking device of satellite docking mechanism based on ADAMS[J]. Journal of Ordnance Equipment Engineering, 2019, 40(10): 45-49 (in Chinese). doi: 10.11809/bqzbgcxb2019.10.010
    [19] 许军校. 面向空间对接的电磁机构设计与实验研究[D]. 长沙: 国防科学技术大学, 2008: 46-52.

    XU J X. Design and experimental study of electromagnetic mechanism for space docking[D]. Changsha: National University of Defense Technology, 2008: 46-52 (in Chinese).
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  120
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 录用日期:  2023-05-05
  • 网络出版日期:  2023-05-29
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答