留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种组网雷达闪烁探测优化调度模型

邢怀玺 邢清华

邢怀玺,邢清华. 一种组网雷达闪烁探测优化调度模型[J]. 北京航空航天大学学报,2024,50(12):3884-3893 doi: 10.13700/j.bh.1001-5965.2022.0924
引用本文: 邢怀玺,邢清华. 一种组网雷达闪烁探测优化调度模型[J]. 北京航空航天大学学报,2024,50(12):3884-3893 doi: 10.13700/j.bh.1001-5965.2022.0924
XING H X,XING Q H. An optimal scheduling model for scintillation detection of netted radars[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3884-3893 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0924
Citation: XING H X,XING Q H. An optimal scheduling model for scintillation detection of netted radars[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3884-3893 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0924

一种组网雷达闪烁探测优化调度模型

doi: 10.13700/j.bh.1001-5965.2022.0924
基金项目: 国家自然科学基金(71771216)
详细信息
    通讯作者:

    E-mail:qh_xing@126.com

  • 中图分类号: E911

An optimal scheduling model for scintillation detection of netted radars

Funds: National Natural Science Foundation of China (71771216)
More Information
  • 摘要:

    空中干扰机执行对地自卫干扰突防行动时,防空组网雷达闪烁探测体制可以保证防空雷达协同探测的效益并提高系统的隐蔽性。提出一种基于多目标人工蜂群(MOABC)算法的防空组网雷达闪烁探测优化调度模型。对方位-距离区间化处理,将雷达网探测责任区划分成网格,将干扰机航迹离散化处理,把网格中心等效成不同时隙下干扰机的位置;建立了以干扰机威胁度、有源探测时间、发现概率为优化目标的雷达网闪烁探测优化调度模型;利用MOABC算法求解雷达工作状态调度方案,并用十进制整数编码方式降低搜索空间维度。仿真结果表明:所提模型相较于其他模型能够更好地提高地面雷达阵地生存能力,同时也保证了雷达网的探测能力。

     

  • 图 1  监视区域网格划分

    Figure 1.  Meshing of detection area

    图 2  干扰信号带宽覆盖雷达接收机带宽

    Figure 2.  Jamming signal bandwidth covering radar receiver bandwidth

    图 3  拥挤度示意图

    Figure 3.  Schematic diagram of congestion degree

    图 4  二进制-十进制映射编码示意图

    Figure 4.  Binary-decimal mapping encoding

    图 5  雷达网部署和干扰机突防航迹

    Figure 5.  Radar network deployment and jammer penetration tracks

    图 6  MOABC算法的非支配解

    Figure 6.  Non-dominated solution of MOABC algorithm

    图 7  雷达工作状态调度时序图

    Figure 7.  Time sequence scheduling diagram of radar in working state

    图 8  单部雷达累计闪烁探测时间

    Figure 8.  Cumulative scintillation detection time of single radar

    图 9  干扰机对单部雷达威胁度

    Figure 9.  Threat degree of jammer to single radar

    图 10  单部雷达发现概率

    Figure 10.  Single radar detection probability

    图 11  干扰机对雷达网平均威胁度变化

    Figure 11.  Average threat degree of jammer to radar network

    图 12  雷达网累计有源探测时间

    Figure 12.  Accumulative active detection time of radar network

    图 13  雷达网总发现概率

    Figure 13.  Radar network detection probability

    图 14  二进制编码非支配解分布

    Figure 14.  Binary-coded non-dominated solution distribution

    表  1  干扰机工作参数

    Table  1.   Jammer working parameters

    参数 数值
    干扰总功率/W 100
    增益/dB 10
    极化失配损失 0.5
    波长/m 0.1
    系统损耗 0.15
    下载: 导出CSV

    表  2  雷达工作参数

    Table  2.   Radar working parameters

    参数 数值
    发射功率/kW 600
    增益/dB 40
    脉冲积累数 16
    虚警概率 10−6
    最大探测距离/km 300
    扫描周期/s 10
    工作频带/GHz 3~8
    波长/m 0.1
    系统损耗 0.15
    下载: 导出CSV

    表  3  2种编码方式算法性能比较

    Table  3.   Comparison of algorithm performance of two encoding methods

    编码方式 $ {\bar f_1} $ $ {\bar f_2} $ $ {\bar f_3} $ 运行时间/s
    二进制 0.520 0.365 0.828 10.09
    十进制 0.508 0.351 0.852 5.89
    下载: 导出CSV
  • [1] YANG Z P, YANG S N, ZHOU Q S, et al. A joint optimization algorithm for focused energy delivery in precision electronic warfare[J]. Defence Technology, 2022, 18(4): 709-721. doi: 10.1016/j.dt.2021.03.001
    [2] GENG Z. Evolution of netted radar systems[J]. IEEE Access, 2020, 8: 124961-124977. doi: 10.1109/ACCESS.2020.3007774
    [3] WU Z J, WANG F, ZHOU J J. Netted radar tracking with multiple simultaneous transmissions against combined PDS interception[J]. Journal of Sensors, 2020, 2020: 5932539.
    [4] OECHSLIN R, WIELAND S, ZUTTER A, et al. Fully adaptive resource management in radar networks[C]//Proceedings of the IEEE Radar Conference. Piscataway: IEEE Press, 2020: 1-6.
    [5] 孙兵, 李龙骧, 罗景青. 协同侦察系统增加猝发探测功能的定位技术[J]. 航天电子对抗, 2016, 32(3): 9-12. doi: 10.3969/j.issn.1673-2421.2016.03.003

    SUN B, LI L X, LUO J Q. Location technology of synergy reconnaissance system adding instantaneous detection function[J]. Aerospace Electronic Warfare, 2016, 32(3): 9-12 (in Chinese). doi: 10.3969/j.issn.1673-2421.2016.03.003
    [6] 高石印, 石玮, 王钦, 等. 地对空雷达干扰机布阵与开机时序控制研究[J]. 空军预警学院学报, 2020, 34(5): 346-350.

    GAO S Y, SHI W, WANG Q, et al. Research on ground-to-air radar jammer embattling and jamming time sequence control[J]. Journal of Air Force Early Warning Academy, 2020, 34(5): 346-350 (in Chinese).
    [7] 陈兴凯, 韩壮志, 封吉平, 等. 基于跟踪精度的火控雷达网间歇开机控制策略[J]. 探测与控制学报, 2013, 35(5): 74-78.

    CHEN X K, HAN Z Z, FENG J P, et al. Intermittent control strategy of fire-control radar network based on tracking accuracy[J]. Journal of Detection & Control, 2013, 35(5): 74-78 (in Chinese).
    [8] YAN J K, JIAO H, PU W Q, et al. Radar sensor network resource allocation for fused target tracking: A brief review[J]. Information Fusion, 2022, 86-87: 104-115. doi: 10.1016/j.inffus.2022.06.009
    [9] USTUN D, TOKTAS A, ERKAN U, et al. Modified artificial bee colony algorithm with differential evolution to enhance precision and convergence performance[J]. Expert Systems with Applications, 2022, 198: 116930. doi: 10.1016/j.eswa.2022.116930
    [10] YE T Y, WANG W J, WANG H, et al. Artificial bee colony algorithm with efficient search strategy based on random neighborhood structure[J]. Knowledge-Based Systems, 2022, 241: 108306. doi: 10.1016/j.knosys.2022.108306
    [11] 舒文江. 分布式雷达智能调度中的辅助决策技术研究[D]. 成都: 电子科技大学, 2020.

    SHU W J. Research on assistant decision-making technology in intelligent scheduling of distributed radar[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese).
    [12] 李波, 李卿莹, 高晓光, 等. 基于序优化的多传感器协同雷达辐射控制[J]. 系统工程与电子技术, 2018, 40(7): 1465-1471. doi: 10.3969/j.issn.1001-506X.2018.07.08

    LI B, LI Q Y, GAO X G, et al. Radar radiation control under multiple sensor synergy based on ordinal optimization[J]. Systems Engineering and Electronics, 2018, 40(7): 1465-1471 (in Chinese). doi: 10.3969/j.issn.1001-506X.2018.07.08
    [13] FENG J F, ZHANG Q, HU J H, et al. Dynamic assessment method of air target threat based on improved GIFSS[J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 525-534. doi: 10.21629/JSEE.2019.03.10
    [14] 郭佳. 基于多属性决策的空中目标威胁评估方法研究[D]. 北京: 北京理工大学, 2017.

    GUO J. Research on threat assessment method of air target based on multi-attribute decision making[D]. Beijing: Beijing Institute of Technology, 2017 (in Chinese).
    [15] CHEN Y F, WU Y, CHEN N, et al. New approximate distributions for the generalized likelihood ratio test detection in passive radar[J]. IEEE Signal Processing Letters, 2019, 26(5): 685-689. doi: 10.1109/LSP.2019.2903632
    [16] RICHTER R, GOMES N A S. A-4 skyhawk aircraft stealth capacity against L-band radar based on dynamic target detection[C]//Proceedings of the IEEE Radar Conference. Piscataway: IEEE Press, 2020: 1-5.
    [17] 李光明, 唐业敏, 蒋苏蓉. 雷达网反隐身性能评估—雷达网综合发现概率[J]. 现代雷达, 2006(1): 23-25. doi: 10.3969/j.issn.1004-7859.2006.01.007

    LI G M, TANG Y M, JIANG S R. Performance evaluation of radar network for counterchecking stealth aircraft comprehensive detecting probability of radar network[J]. Modern Radar, 2006(1): 23-25 (in Chinese). doi: 10.3969/j.issn.1004-7859.2006.01.007
    [18] 王旭, 宋笔锋, 郭晓辉. 飞行器被雷达发现概率的计算方法研究[J]. 系统工程理论与实践, 2006, 26(6): 130-134. doi: 10.3321/j.issn:1000-6788.2006.06.022

    WANG X, SONG B F, GUO X H. Research on the approach for calculating the probability of detecting an aircraft by radar system[J]. Systems Engineering-Theory & Practice, 2006, 26(6): 130-134 (in Chinese). doi: 10.3321/j.issn:1000-6788.2006.06.022
    [19] NIYOMUBYEYI O, SICUAIO T E, DÍAZ GONZÁLEZ J I, et al. A comparative study of four metaheuristic algorithms, AMOSA, MOABC, MSPSO, and NSGA-II for evacuation planning[J]. Algorithms, 2020, 13(1): 16. doi: 10.3390/a13010016
    [20] CHANG T Q, KONG D P, HAO N, et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing, 2018, 70: 845-863. doi: 10.1016/j.asoc.2018.06.014
    [21] MA L B, WANG X W, HUANG M, et al. Two-level master–slave RFID networks planning via hybrid multiobjective artificial bee colony optimizer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(5): 861-880. doi: 10.1109/TSMC.2017.2723483
    [22] LI Y, KOU Y X, LI Z W, et al. A modified Pareto ant colony optimization approach to solve biobjective weapon-target assignment problem[J]. International Journal of Aerospace Engineering, 2017, 2017: 1746124.
    [23] 唐嘉诚. 多功能雷达组网资源调度方法研究[D]. 成都: 电子科技大学, 2021.

    TANG J C. Research on resource scheduling method of multifunctional radar networking[D]. Chengdu: University of Electronic Science and Technology of China, 2021(in Chinese).
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  84
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 录用日期:  2023-04-01
  • 网络出版日期:  2023-04-21
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答