-
摘要:
终端区交通态势感知技术相关研究已有成果,如何借助终端区态势感知技术优化终端区交通态势,当前还未有明确的方法。由此提出终端区态势利导的概念,将实现态势利导的关键技术分为3类,并分别做了详细阐述。在传统的时隙分配模型上,加入航空公司偏好性,建立两阶段时隙调配机制:第1阶段,构建了一个对各航空公司公平的参考时刻表;第2阶段,通过调整参考时刻表以尽可能多地满足这些航空公司关于时刻表中位移分配的请求。算例结果表明:根据所提时隙调配机制得到的时刻表不仅满足了公平性,还提高了航空公司对其的接受性,并分析了该机制对繁忙终端区交通态势的良性引导作用。
Abstract:The research on traffic situation awareness technology in terminal areas has made some achievements, but there is no clear method to optimize traffic situation in terminal areas with the help of this technology. In this paper, the concept of situation orientation in terminal areas was proposed, and the key technologies to achieve situation orientation were divided into three categories and elaborated respectively. Then, based on the traditional slot allocation model, a two-stage slot allocation mechanism was established by adding airlines’ preferences. In the first stage, a fair reference schedule was constructed for each airline; in the second stage, the reference schedule was adjusted to satisfy as many requests as possible from these airlines’ regarding the displacement of allocation in the schedule. The results of the example show that the schedule obtained according to the proposed slot allocation mechanism not only ensures fairness but also improves the acceptability of the airlines, and the positive effect of the mechanism on the traffic situation in busy terminal areas is analyzed.
-
Key words:
- air transport /
- terminal area /
- situation awareness /
- situation orientation /
- slot allocation
-
表 1 验证机场的容量约束
Table 1. Capacity constraint of selected airport
架次 进场容量
(60 min)离场容量
(60 min)进、离场综合容量
(15 min)进、离场综合容量
(60 min)8 12 5 20 -
[1] 张兆宁, 余洲. 基于态势感知的滑行路径优化算法[J]. 科学技术与工程, 2022, 22(4): 1693-1698. doi: 10.3969/j.issn.1671-1815.2022.04.051ZHANG Z N, YU Z. Taxiing route optimization algorithm based on situation awareness[J]. Science Technology and Engineering, 2022, 22(4): 1693-1698 (in Chinese). doi: 10.3969/j.issn.1671-1815.2022.04.051 [2] 马玲, 刘韦廷, 王航臣. 基于交叉点复杂度的空域通行能力优化方法[J]. 科学技术与工程, 2022, 22(24): 10796-10804. doi: 10.3969/j.issn.1671-1815.2022.24.054MA L, LIU W T, WANG H C. Optimization of airspace capacity based on intersection complexity[J]. Science Technology and Engineering, 2022, 22(24): 10796-10804 (in Chinese). doi: 10.3969/j.issn.1671-1815.2022.24.054 [3] 乐美龙, 吴宪晟, 胡钰明. 基于滚动时域控制的多路径进场航班排序优化[J]. 北京航空航天大学学报, 2023, 49(12): 3222-3229.LE M L, WU X S, HU Y M. Arrival flights optimal sequencing with multi-path selection based on rolling horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3222-3229(in Chinese). [4] CECEN R K, CETEK C, KAYA O. Aircraft sequencing and scheduling in TMAs under wind direction uncertainties[J]. The Aeronautical Journal, 2020, 124(1282): 1896-1912. [5] SANDAMALI G G N, SU R, SUDHEERA K L K, et al. A safety-aware real-time air traffic flow management model under demand and capacity uncertainties[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8615-8628. doi: 10.1109/TITS.2021.3083964 [6] OKTAL H, YAMAN K, KASıMBEYLI R. A mathematical programming approach to optimum airspace sectorisation problem[J]. Journal of Navigation, 2020, 73(3): 599-612. doi: 10.1017/S0373463319000833 [7] 王守相, 梁栋, 葛磊蛟. 智能配电网态势感知和态势利导关键技术[J]. 电力系统自动化, 2016, 40(12): 2-8. doi: 10.7500/AEPS20160509003WANG S X, LIANG D, GE L J. Key technologies of situation awareness and orientation for smart distribution systems[J]. Automation of Electric Power Systems, 2016, 40(12): 2-8 (in Chinese). doi: 10.7500/AEPS20160509003 [8] 中国民用航空局. 机场协同决策(A-CDM)实施规范(试行): IB-TM-2018-0068[S]. 北京: 中国民用航空局, 2018.Civil Aviation Administration of China. Airport collaborative decision making standard(to try out): IB-TM-2018-0068[S]. Beijing: Civil Aviation Administration of China, 2018. [9] 孙佳. 聚焦民航现实问题前瞻行业未来发展:未来民航研究院发展思考[J]. 民航管理, 2022(8): 23-27.SUN J. Focusing on realistic issues of civil aviation and forecasting the industry's development: Thoughts on the development of the future civil aviation research institute[J]. Civil Aviation Management, 2022(8): 23-27(in Chinese). [10] 陈欣, 张珍, 邱瑞, 等. 基于动态博弈的补贴模式对机场群航线网络结构的影响研究[J]. 四川大学学报(自然科学版), 2022, 59(5): 195-201.CHEN X, ZHANG Z, QIU R, et al. Research on the impact of subsidization on the airline networks of multi-airport systems based on dynamic game theory[J]. Journal of Sichuan University (Natural Science Edition), 2022, 59(5): 195-201 (in Chinese). [11] WONG C S Y, SUNDARAM S, SUNDARARAJAN N. CDAS: A cognitive decision-making architecture for dynamic airspace sectorization for efficient operations[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1659-1668. doi: 10.1109/TITS.2018.2833151 [12] WONG C S Y, SURESH S, SUNDARARAJAN N. A rolling horizon optimization approach for dynamic airspace sectorization[J]. IFAC Journal of Systems and Control, 2020, 11: 100076. doi: 10.1016/j.ifacsc.2020.100076 [13] PRAKASH R, PIPLANI R, DESAI J. An optimal data-splitting algorithm for aircraft sequencing on two runways[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103403. doi: 10.1016/j.trc.2021.103403 [14] LI Y J, CLARKE J P, DEY S S. Using submodularity within column generation to solve the flight-to-gate assignment problem[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103217. doi: 10.1016/j.trc.2021.103217 [15] RIBEIRO N A, JACQUILLAT A, ANTUNES A P, et al. An optimization approach for airport slot allocation under IATA guidelines[J]. Transportation Research Part B: Methodological, 2018, 112: 132-156. doi: 10.1016/j.trb.2018.04.005 [16] WALTERT M, WICKI J, JIMENEZ PEREZ E, et al. Ratio-based design hour determination for airport passenger terminal facilities[J]. Journal of Air Transport Management, 2021, 96: 102125. doi: 10.1016/j.jairtraman.2021.102125 [17] JIANG Y, ZOGRAFOS K G. A decision making framework for incorporating fairness in allocating slots at capacity-constrained airports[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 103039. [18] YAN C W, SWAROOP P, BALL M O, et al. Majority judgment over a convex candidate space[J]. Operations Research Letters, 2019, 47(4): 317-325. doi: 10.1016/j.orl.2019.04.009 [19] 乐美龙, 王婷婷, 吴聪聪. 基于改进的GRASP算法的飞机优化恢复研究[J]. 江苏科技大学学报(自然科学版), 2013, 27(2): 166-170.LE M L, WANG T T, WU C C. Study on aircrafts optimal recovery based on improved GRASP algorithm[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2013, 27(2): 166-170 (in Chinese). [20] 何坚, 果红艳, 姚远, 等. 基于有效中转时间预测的不正常航班恢复技术[J]. 北京航空航天大学学报, 2022, 48(3): 384-393.HE J, GUO H Y, YAO Y, et al. Irregular flight recovery technique based on accurate transit time prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 384-393 (in Chinese). [21] 田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226.TIAN W, YANG F, YIN J N, et al. Multi-obj ective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226 (in Chinese). [22] 亓尧, 王瑛, 梁颖, 等. 不确定容量下时隙分配问题两阶段规划模型[J]. 北京航空航天大学学报, 2019, 45(9): 1747-1756.QI Y, WANG Y, LIANG Y, et al. Two-stage programming model for time slot allocation problem under uncertain capacity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1747-1756 (in Chinese). [23] 田勇, 李永庆, 万莉莉, 等. 基于市场机制的地面等待时隙分配方法[J]. 系统工程理论与实践, 2014, 34(6): 1614-1619. doi: 10.12011/1000-6788(2014)6-1614TIAN Y, LI Y Q, WAN L L, et al. Slot allocation based on market mechanism in ground holding policy[J]. Systems Engineering-Theory & Practice, 2014, 34(6): 1614-1619 (in Chinese). doi: 10.12011/1000-6788(2014)6-1614 [24] 严俊, 唐小卫, 吴桐水. 自主取消航班的协同式时隙二次指派方法[J]. 哈尔滨工业大学学报, 2013, 45(3): 107-111. doi: 10.11918/j.issn.0367-6234.2013.03.020YAN J, TANG X W, WU T S. Collaborative slot secondary assignment method for autonomous flight cancellation[J]. Journal of Harbin Institute of Technology, 2013, 45(3): 107-111 (in Chinese). doi: 10.11918/j.issn.0367-6234.2013.03.020 [25] RIBEIRO N A, JACQUILLAT A, ANTUNES A P. A large-scale neighborhood search approach to airport slot allocation[J]. Transportation Science, 2019, 53(6): 1772-1797. doi: 10.1287/trsc.2019.0922 [26] RIBEIRO N A, JACQUILLAT A, ANTUNES A P, et al. Improving slot allocation at Level 3 airports[J]. Transportation Research Part A: Policy and Practice, 2019, 127: 32-54. doi: 10.1016/j.tra.2019.06.014 [27] 徐肖豪, 王飞. 地面等待策略中的时隙分配模型与算法研究[J]. 航空学报, 2010, 31(10): 1993-2003.XU X H, WANG F. Research on slot allocation models and algorithms in ground holding policy[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 1993-2003 (in Chinese).