留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

终端区交通态势利导及实现方法

余洲 张兆宁

余洲,张兆宁. 终端区交通态势利导及实现方法[J]. 北京航空航天大学学报,2024,50(12):3894-3902 doi: 10.13700/j.bh.1001-5965.2022.0929
引用本文: 余洲,张兆宁. 终端区交通态势利导及实现方法[J]. 北京航空航天大学学报,2024,50(12):3894-3902 doi: 10.13700/j.bh.1001-5965.2022.0929
YU Z,ZHANG Z N. Traffic situation orientation and implementation method in terminal areas[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3894-3902 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0929
Citation: YU Z,ZHANG Z N. Traffic situation orientation and implementation method in terminal areas[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3894-3902 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0929

终端区交通态势利导及实现方法

doi: 10.13700/j.bh.1001-5965.2022.0929
基金项目: 国家重点研发计划(2020YFB1600103);国家自然科学基金民航联合基金重点项目(2233209)
详细信息
    通讯作者:

    E-mail:zzhaoning@263.net

  • 中图分类号: V355

Traffic situation orientation and implementation method in terminal areas

Funds: National Key Research and Development Program of China (2020YFB1600103); Key Projects of the Civil Aviation Joint Fund of the National Natural Science Foundation of China (2233209)
More Information
  • 摘要:

    终端区交通态势感知技术相关研究已有成果,如何借助终端区态势感知技术优化终端区交通态势,当前还未有明确的方法。由此提出终端区态势利导的概念,将实现态势利导的关键技术分为3类,并分别做了详细阐述。在传统的时隙分配模型上,加入航空公司偏好性,建立两阶段时隙调配机制:第1阶段,构建了一个对各航空公司公平的参考时刻表;第2阶段,通过调整参考时刻表以尽可能多地满足这些航空公司关于时刻表中位移分配的请求。算例结果表明:根据所提时隙调配机制得到的时刻表不仅满足了公平性,还提高了航空公司对其的接受性,并分析了该机制对繁忙终端区交通态势的良性引导作用。

     

  • 图 1  一天的最优调度(周期为1 h)

    Figure 1.  Optimal scheduling for a day (frequency of one hour)

    图 2  位移-MDA公平性的有效边界

    Figure 2.  Effective boundaries for displacement-MDA fairness

    图 3  基于位移预算机制的调整量分布情况示意图

    Figure 3.  Schematic diagram of distribution of adjustment volume based on displacement budget mechanism

    表  1  验证机场的容量约束

    Table  1.   Capacity constraint of selected airport 架次

    进场容量
    (60 min)
    离场容量
    (60 min)
    进、离场综合容量
    (15 min)
    进、离场综合容量
    (60 min)
    8 12 5 20
    下载: 导出CSV
  • [1] 张兆宁, 余洲. 基于态势感知的滑行路径优化算法[J]. 科学技术与工程, 2022, 22(4): 1693-1698. doi: 10.3969/j.issn.1671-1815.2022.04.051

    ZHANG Z N, YU Z. Taxiing route optimization algorithm based on situation awareness[J]. Science Technology and Engineering, 2022, 22(4): 1693-1698 (in Chinese). doi: 10.3969/j.issn.1671-1815.2022.04.051
    [2] 马玲, 刘韦廷, 王航臣. 基于交叉点复杂度的空域通行能力优化方法[J]. 科学技术与工程, 2022, 22(24): 10796-10804. doi: 10.3969/j.issn.1671-1815.2022.24.054

    MA L, LIU W T, WANG H C. Optimization of airspace capacity based on intersection complexity[J]. Science Technology and Engineering, 2022, 22(24): 10796-10804 (in Chinese). doi: 10.3969/j.issn.1671-1815.2022.24.054
    [3] 乐美龙, 吴宪晟, 胡钰明. 基于滚动时域控制的多路径进场航班排序优化[J]. 北京航空航天大学学报, 2023, 49(12): 3222-3229.

    LE M L, WU X S, HU Y M. Arrival flights optimal sequencing with multi-path selection based on rolling horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3222-3229(in Chinese).
    [4] CECEN R K, CETEK C, KAYA O. Aircraft sequencing and scheduling in TMAs under wind direction uncertainties[J]. The Aeronautical Journal, 2020, 124(1282): 1896-1912.
    [5] SANDAMALI G G N, SU R, SUDHEERA K L K, et al. A safety-aware real-time air traffic flow management model under demand and capacity uncertainties[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8615-8628. doi: 10.1109/TITS.2021.3083964
    [6] OKTAL H, YAMAN K, KASıMBEYLI R. A mathematical programming approach to optimum airspace sectorisation problem[J]. Journal of Navigation, 2020, 73(3): 599-612. doi: 10.1017/S0373463319000833
    [7] 王守相, 梁栋, 葛磊蛟. 智能配电网态势感知和态势利导关键技术[J]. 电力系统自动化, 2016, 40(12): 2-8. doi: 10.7500/AEPS20160509003

    WANG S X, LIANG D, GE L J. Key technologies of situation awareness and orientation for smart distribution systems[J]. Automation of Electric Power Systems, 2016, 40(12): 2-8 (in Chinese). doi: 10.7500/AEPS20160509003
    [8] 中国民用航空局. 机场协同决策(A-CDM)实施规范(试行): IB-TM-2018-0068[S]. 北京: 中国民用航空局, 2018.

    Civil Aviation Administration of China. Airport collaborative decision making standard(to try out): IB-TM-2018-0068[S]. Beijing: Civil Aviation Administration of China, 2018.
    [9] 孙佳. 聚焦民航现实问题前瞻行业未来发展:未来民航研究院发展思考[J]. 民航管理, 2022(8): 23-27.

    SUN J. Focusing on realistic issues of civil aviation and forecasting the industry's development: Thoughts on the development of the future civil aviation research institute[J]. Civil Aviation Management, 2022(8): 23-27(in Chinese).
    [10] 陈欣, 张珍, 邱瑞, 等. 基于动态博弈的补贴模式对机场群航线网络结构的影响研究[J]. 四川大学学报(自然科学版), 2022, 59(5): 195-201.

    CHEN X, ZHANG Z, QIU R, et al. Research on the impact of subsidization on the airline networks of multi-airport systems based on dynamic game theory[J]. Journal of Sichuan University (Natural Science Edition), 2022, 59(5): 195-201 (in Chinese).
    [11] WONG C S Y, SUNDARAM S, SUNDARARAJAN N. CDAS: A cognitive decision-making architecture for dynamic airspace sectorization for efficient operations[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1659-1668. doi: 10.1109/TITS.2018.2833151
    [12] WONG C S Y, SURESH S, SUNDARARAJAN N. A rolling horizon optimization approach for dynamic airspace sectorization[J]. IFAC Journal of Systems and Control, 2020, 11: 100076. doi: 10.1016/j.ifacsc.2020.100076
    [13] PRAKASH R, PIPLANI R, DESAI J. An optimal data-splitting algorithm for aircraft sequencing on two runways[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103403. doi: 10.1016/j.trc.2021.103403
    [14] LI Y J, CLARKE J P, DEY S S. Using submodularity within column generation to solve the flight-to-gate assignment problem[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103217. doi: 10.1016/j.trc.2021.103217
    [15] RIBEIRO N A, JACQUILLAT A, ANTUNES A P, et al. An optimization approach for airport slot allocation under IATA guidelines[J]. Transportation Research Part B: Methodological, 2018, 112: 132-156. doi: 10.1016/j.trb.2018.04.005
    [16] WALTERT M, WICKI J, JIMENEZ PEREZ E, et al. Ratio-based design hour determination for airport passenger terminal facilities[J]. Journal of Air Transport Management, 2021, 96: 102125. doi: 10.1016/j.jairtraman.2021.102125
    [17] JIANG Y, ZOGRAFOS K G. A decision making framework for incorporating fairness in allocating slots at capacity-constrained airports[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 103039.
    [18] YAN C W, SWAROOP P, BALL M O, et al. Majority judgment over a convex candidate space[J]. Operations Research Letters, 2019, 47(4): 317-325. doi: 10.1016/j.orl.2019.04.009
    [19] 乐美龙, 王婷婷, 吴聪聪. 基于改进的GRASP算法的飞机优化恢复研究[J]. 江苏科技大学学报(自然科学版), 2013, 27(2): 166-170.

    LE M L, WANG T T, WU C C. Study on aircrafts optimal recovery based on improved GRASP algorithm[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2013, 27(2): 166-170 (in Chinese).
    [20] 何坚, 果红艳, 姚远, 等. 基于有效中转时间预测的不正常航班恢复技术[J]. 北京航空航天大学学报, 2022, 48(3): 384-393.

    HE J, GUO H Y, YAO Y, et al. Irregular flight recovery technique based on accurate transit time prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 384-393 (in Chinese).
    [21] 田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226.

    TIAN W, YANG F, YIN J N, et al. Multi-obj ective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226 (in Chinese).
    [22] 亓尧, 王瑛, 梁颖, 等. 不确定容量下时隙分配问题两阶段规划模型[J]. 北京航空航天大学学报, 2019, 45(9): 1747-1756.

    QI Y, WANG Y, LIANG Y, et al. Two-stage programming model for time slot allocation problem under uncertain capacity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1747-1756 (in Chinese).
    [23] 田勇, 李永庆, 万莉莉, 等. 基于市场机制的地面等待时隙分配方法[J]. 系统工程理论与实践, 2014, 34(6): 1614-1619. doi: 10.12011/1000-6788(2014)6-1614

    TIAN Y, LI Y Q, WAN L L, et al. Slot allocation based on market mechanism in ground holding policy[J]. Systems Engineering-Theory & Practice, 2014, 34(6): 1614-1619 (in Chinese). doi: 10.12011/1000-6788(2014)6-1614
    [24] 严俊, 唐小卫, 吴桐水. 自主取消航班的协同式时隙二次指派方法[J]. 哈尔滨工业大学学报, 2013, 45(3): 107-111. doi: 10.11918/j.issn.0367-6234.2013.03.020

    YAN J, TANG X W, WU T S. Collaborative slot secondary assignment method for autonomous flight cancellation[J]. Journal of Harbin Institute of Technology, 2013, 45(3): 107-111 (in Chinese). doi: 10.11918/j.issn.0367-6234.2013.03.020
    [25] RIBEIRO N A, JACQUILLAT A, ANTUNES A P. A large-scale neighborhood search approach to airport slot allocation[J]. Transportation Science, 2019, 53(6): 1772-1797. doi: 10.1287/trsc.2019.0922
    [26] RIBEIRO N A, JACQUILLAT A, ANTUNES A P, et al. Improving slot allocation at Level 3 airports[J]. Transportation Research Part A: Policy and Practice, 2019, 127: 32-54. doi: 10.1016/j.tra.2019.06.014
    [27] 徐肖豪, 王飞. 地面等待策略中的时隙分配模型与算法研究[J]. 航空学报, 2010, 31(10): 1993-2003.

    XU X H, WANG F. Research on slot allocation models and algorithms in ground holding policy[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 1993-2003 (in Chinese).
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  73
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 录用日期:  2023-03-26
  • 网络出版日期:  2023-04-03
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答