留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星降落伞柔性连接技术力学特性

赵淼 贾贺 武士轻 刘涛 刘宇 李健

赵淼,贾贺,武士轻,等. 火星降落伞柔性连接技术力学特性[J]. 北京航空航天大学学报,2024,50(12):3815-3824 doi: 10.13700/j.bh.1001-5965.2022.0932
引用本文: 赵淼,贾贺,武士轻,等. 火星降落伞柔性连接技术力学特性[J]. 北京航空航天大学学报,2024,50(12):3815-3824 doi: 10.13700/j.bh.1001-5965.2022.0932
ZHAO M,JIA H,WU S Q,et al. Mechanical characteristics of flexible connection technology for Mars parachute[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3815-3824 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0932
Citation: ZHAO M,JIA H,WU S Q,et al. Mechanical characteristics of flexible connection technology for Mars parachute[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3815-3824 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0932

火星降落伞柔性连接技术力学特性

doi: 10.13700/j.bh.1001-5965.2022.0932
基金项目: 北京市自然科学基金(L248038)
详细信息
    通讯作者:

    E-mail:chinajiah@163.com

  • 中图分类号: V445

Mechanical characteristics of flexible connection technology for Mars parachute

Funds: Beijing Natural Science Foundation (L248038)
More Information
  • 摘要:

    作为火星探测器减速着陆过程中必须的气动减速系统,火星降落伞对小质量、大承载连接构件的需求日益增长。针对该需求,提出一种新型的柔性连接技术,旨在降低柔性织物磨损和系统质量的同时提升连接构件的载荷承载能力。研究过程采用两步数值建模分析结合试验验证的方法,采用集中参数法构建柔性连接的动力学模型;将动态仿真结果参数作为有限元的边界条件,分析各连接点处的接触状态;结合试验数据对降落伞减速系统的强度进行验证,数值模拟结果与试验数据一致性良好。研究结果表明:相比于金属构件,柔性连接技术使得降落伞连接强度提升了1.73倍,质量减轻了62.8%,接触位置的应变随开伞速度的增加而变大;新型柔性连接装置能够承受火星环境的开伞载荷,可为火星降落伞的设计提供重要参考依据。

     

  • 图 1  火星降落伞示意图

    Figure 1.  Schematic of a Mars parachute

    图 2  柔性连接装置示意图

    Figure 2.  Schematic of flexible connection device

    图 3  柔性连接装置的弹簧-质量点模型

    Figure 3.  Spring-damper of flexible connection device

    图 4  二维接触状态示意图

    Figure 4.  Schematic of Two dimension contact state

    图 5  应用于降落伞的3种连接装置示意图

    Figure 5.  Schematic diagrams for three connection devices applied to parachutes

    图 6  试验机静拉伸试验示意图

    Figure 6.  Schematic diagram of static tensile test of testing machine

    图 7  静态拉伸试验结果分散性表现

    Figure 7.  Dispersion performance of static tensile test results

    图 8  新型柔性连接装置中各个组件的载荷-位移曲线

    Figure 8.  Load-displacement curves of components in new flexible connection device

    图 9  3种工况的试验结果对比

    Figure 9.  Comparison of test results for three operating conditions

    图 10  不同开伞速度条件下的软环套吸能量

    Figure 10.  Energy absorption value of soft link under different opening speeds

    图 11  软环套与伞绳接触

    Figure 11.  Soft ring sleeve in contact with the parachute rope

    图 12  软环套与吊带接触

    Figure 12.  Soft link sleeve in contact with connecting strap

    图 13  伞绳接触部位的单元最大应变

    Figure 13.  Maximum strain of the element at the contact of area of the parachute rope

    图 14  吊带接触部位的单元最大应变

    Figure 14.  Maximum strain of the element at the contact of suspension line

    图 15  动态冲击试验后的试验件状态

    Figure 15.  Test piece status after dynamic impact test

    图 16  某架次空投试验

    Figure 16.  Aerial drop test of a sortie

    图 17  动态试验数据和仿真结果

    Figure 17.  Dynamic test data and simulation result

    图 18  软环套和吊带的载荷曲线

    Figure 18.  Load curve of riser and soft link

    图 19  软环套和伞绳接触部位应变

    Figure 19.  Strain of the contact part between soft link and suspension line

    表  1  材料参数

    Table  1.   Material parameter

    材料 密度/(kg·m−3) 弹性模量/GPa 泊松比
    降落伞伞绳 340 39.0 0.3
    软环套 760 1.1 0.3
    金属连接件 7958 210 0.3
    吊带 1160 13.0 0.3
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Test conditions

    工况 组合形式 加载速度/
    (mm·min−1)
    工况1 降落伞伞绳+吊带 100
    工况2 降落伞伞绳+金属连接件+吊带 100
    工况3 降落伞伞绳+软环套+吊带 100
    下载: 导出CSV
  • [1] 荣伟, 王海涛. 航天器回收着陆技术[M]. 北京: 中国宇航出版社, 2019.

    RONG W, WANG H T. Recovery technology of spacecraft[M]. Beijing: China Astronautic Publishing House, 2019 (in Chinese).
    [2] 谭维炽, 胡金刚. 航天器系统工程[M]. 北京: 中国科学技术出版社, 2009.

    TAN W C, HU J G. Spacecraft system engineering[M]. Beijing: China Science and Technology Press, 2009 (in Chinese).
    [3] TANNER C L, CLARK I G, CHEN A. Overview of the Mars 2020 parachute risk reduction activity[C]//Proceedings of the IEEE Aerospace Conference. Piscataway: IEEE Press, 2018: 1-11.
    [4] 杨贤文, 郝东, 易国庆, 等. 火星探测降落伞模型高速风洞变迎角试验技术[J]. 宇航学报, 2019, 40(12): 1461-1467. doi: 10.3873/j.issn.1000-1328.2019.12.010

    YANG X W, HAO D, YI G Q, et al. Variable angle of attack test technique of Mars exploration parachute model in high speed wind tunnel[J]. Journal of Astronautics, 2019, 40(12): 1461-1467 (in Chinese). doi: 10.3873/j.issn.1000-1328.2019.12.010
    [5] 贾贺, 包进进, 荣伟. 设计参数及大气参数对降落伞充气性能的影响[J]. 航天返回与遥感, 2020, 41(3): 28-36.

    JIA H, BAO J J, RONG W. The design and atmospheric parameters influences on parachute inflation performance[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(3): 28-36(in Chinese).
    [6] 贾贺, 荣伟, 江长虹, 等. 探月三期月地高速再入返回器降落伞减速系统设计与实现[J]. 中国科学(技术科学), 2015, 45(2): 185-192. doi: 10.1360/N092014-00483

    JIA H, RONG W, JIANG C H, et al. The design and implementation of the parachute deceleration system on the circumlunar return and reentry spacecraft of 3rd phase of China lunar exploration program[J]. Scientia Sinica (Technologica), 2015, 45(2): 185-192 (in Chinese). doi: 10.1360/N092014-00483
    [7] 王利荣. 降落伞理论与应用[M]. 北京: 宇航出版社, 1997.

    WANG L R. Parachute theory and apply[M]. Beijing: China Astronautic Publishing House, 1997(in Chinese).
    [8] WITKOWSKI A, KANDIS M, ADAMS D S. Mars science laboratory parachute system performance[C]//Proceedings of the AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013.
    [9] 唐见茂. 高性能纤维及复合材料[M]. 北京: 化学工业出版社, 2013.

    TANG J M. High performance fibers and composites[M]. Beijing: Chemical Industry Press, 2013 (in Chinese).
    [10] KUEH A B H. Buckling of sandwich columns reinforced by triaxial weave fabric composite skin-sheets[J]. International Journal of Mechanical Sciences, 2013, 66(4): 45-54.
    [11] 荣伟, 鲁媛媛, 包进进, 等. 火星探测器减速着陆过程中若干问题的研究[J]. 南京航空航天大学学报, 2016, 48(4): 445-453.

    RONG W, LU Y Y, BAO J J, et al. Several problems relative with descent and landing process of Mars explorer[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(4): 445-453 (in Chinese).
    [12] FUJINO T, TAKAHASHI T. Numerical simulation of Mars entry flight using magnetohydrodynamic parachute effect[C]//Proceedings of the 47th AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2016.
    [13] NAKAYA K, IAI M, OMAGARI K, et al. Formation deployment control for spinning tethered formation flying-simulations and ground experiments[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004.
    [14] CARTER J T, GREENE M. Deployment and retrieval simulation of a single tether satellite system[C]//Proceedings of the 20th Southeastern Symposium on System Theory. Piscataway: IEEE Press, 1988: 657-660.
    [15] 潘冬, 张越, 魏承, 等. 空间大型末端执行器绳索捕获动力学建模与仿真[J]. 振动与冲击, 2015, 34(1): 74-79.

    PAN D, ZHANG Y, WEI C, et al. Dynamic modeling and simulation on rope capturing by space large end effector[J]. Journal of Vibration and Shock, 2015, 34(1): 74-79 (in Chinese).
    [16] DAUM J S, MOLLMANN C M. Design and airdrop testing of the capsule parachute assembly system sub-scale main parachute[C]// Proceedings of the 24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017.
    [17] HENNINGS E J, PETERSEN M L, ANDERSON B, et al. NASA CPAS drogue textile riser feasibility study[C]//Proceedings of the AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2015: 1-24.
    [18] 黄伟. 火星探测器降落伞减速过程建模与仿真研究[D]. 长沙: 国防科技大学, 2018.

    HUANG W. Modeling and simulation of parachute deceleration process of Mars probe[D]. Changsha: National University of Defense Technology, 2018 (in Chinese).
    [19] 鲁媛媛, 荣伟, 吴世通. 火星环境下降落伞拉直过程的动力学建模[J]. 航天返回与遥感, 2014, 35(1): 29-36. doi: 10.3969/j.issn.1009-8518.2014.01.005

    LU Y Y, RONG W, WU S T. Dynamic modeling of parachute deployment in Mars environment[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(1): 29-36 (in Chinese). doi: 10.3969/j.issn.1009-8518.2014.01.005
    [20] 董富祥, 周志成, 曲广吉. 柔性航天器拖拽空间碎片动力学与控制仿真研究[J]. 动力学与控制学报, 2018, 16(2): 165-170. doi: 10.6052/1672-6553-2018-087

    DONG F X, ZHOU Z C, QU G J. Simulation study on dynamics and control of space debris tugged by flexible spacecraft[J]. Journal of Dynamics and Control, 2018, 16(2): 165-170 (in Chinese). doi: 10.6052/1672-6553-2018-087
    [21] 王崴, 周诚, 杨云, 等. 基于改进弹簧-质点模型的柔性绳索仿真[J]. 计算机辅助设计与图形学学报, 2015, 27(11): 2230-2236.

    WANG W, ZHOU C, YANG Y, et al. Flexible rope simulation based on improved mass-spring mode[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(11): 2230-2236 (in Chinese).
    [22] 姜兵, 樊世超, 刘明辉. 月面重力模拟系统恒拉力绳索的动力学研究[J]. 航天器环境工程, 2012, 29(3): 278-282. doi: 10.3969/j.issn.1673-1379.2012.03.008

    JIANG B, FAN S C, LIU M H. Dynamics of cable in constant tension in lunar gravity simulation system[J]. Spacecraft Environment Engineering, 2012, 29(3): 278-282 (in Chinese). doi: 10.3969/j.issn.1673-1379.2012.03.008
    [23] 张奇. 拦阻钩挂索冲击动力学及试验方法研究[D]. 南京: 南京航空航天大学, 2018.

    ZHANG Q. Study on impact dynamics and test method of arresting hook hanging cable[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
    [24] 陈旭, 荣伟, 陈国良. “火星探测漫游者” 降落伞的研制[J]. 航天器工程, 2007, 16(2): 50-56. doi: 10.3969/j.issn.1673-8748.2007.02.008

    CHEN X, RONG W, CHEN G L. Development of the parachute of Mars exploration rover[J]. Spacecraft Engineering, 2007, 16(2): 50-56 (in Chinese). doi: 10.3969/j.issn.1673-8748.2007.02.008
    [25] O’FARRELL C, KARLGAARD C, TYNIS J A, et al. Overview and reconstruction of the ASPIRE project’s SR01 supersonic parachute test[C]//Proceedings of the IEEE Aerospace Conference. Piscataway: IEEE Press, 2018: 1-18.
    [26] BATHE K J. 有限元法理论、格式与求解方法[M]. 轩建平译. 北京: 高等教育出版社, 2016.

    BATHE K J. Finite element procedures[M]. XUAN J P translated. Beijing: Higher Education Press, 2016(in Chinese).
    [27] YASTREBOV V A. Numerical methods in contact mechanics[M]. Hoboken: Wiley, 2013.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  81
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 录用日期:  2023-02-17
  • 网络出版日期:  2023-03-10
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答