-
摘要:
作为火星探测器减速着陆过程中必须的气动减速系统,火星降落伞对小质量、大承载连接构件的需求日益增长。针对该需求,提出一种新型的柔性连接技术,旨在降低柔性织物磨损和系统质量的同时提升连接构件的载荷承载能力。研究过程采用两步数值建模分析结合试验验证的方法,采用集中参数法构建柔性连接的动力学模型;将动态仿真结果参数作为有限元的边界条件,分析各连接点处的接触状态;结合试验数据对降落伞减速系统的强度进行验证,数值模拟结果与试验数据一致性良好。研究结果表明:相比于金属构件,柔性连接技术使得降落伞连接强度提升了1.73倍,质量减轻了62.8%,接触位置的应变随开伞速度的增加而变大;新型柔性连接装置能够承受火星环境的开伞载荷,可为火星降落伞的设计提供重要参考依据。
Abstract:As a necessary pneumatic deceleration system in the descent and landing process of the Mars probe, the demand for Mars parachutes for connection components with small mass and large loads is increasing. In view of this situation, this paper proposes a new type of flexible connection technology, which aims to the wear of flexible fabric and the weight of the system, and improve the load carrying load carrying capacity of the connection part. The research process adopted the method of two-step analysis combined with experimental verification. The numerical model of the flexible connection was first built using the lumped parameter approach, and the findings were then used as the finite element's boundary conditions to examine each joint's contact state. Finally, the strength of the parachute was verified by the test data, and the numerical simulation results are in good agreement with the test data. The findings demonstrate that, in comparison to metal components, the flexible connection technology parachute's strength is increased by 1.67 times, its weight is reduced by 58.3%, the strain at the contact position increases as the parachute's opening speed increases, and it can withstand the load associated with opening a parachute in a Mars-like environment. These findings could be a valuable design reference for future Mars parachutes.
-
表 1 材料参数
Table 1. Material parameter
材料 密度/(kg·m−3) 弹性模量/GPa 泊松比 降落伞伞绳 340 39.0 0.3 软环套 760 1.1 0.3 金属连接件 7958 210 0.3 吊带 1160 13.0 0.3 表 2 试验工况
Table 2. Test conditions
工况 组合形式 加载速度/
(mm·min−1)工况1 降落伞伞绳+吊带 100 工况2 降落伞伞绳+金属连接件+吊带 100 工况3 降落伞伞绳+软环套+吊带 100 -
[1] 荣伟, 王海涛. 航天器回收着陆技术[M]. 北京: 中国宇航出版社, 2019.RONG W, WANG H T. Recovery technology of spacecraft[M]. Beijing: China Astronautic Publishing House, 2019 (in Chinese). [2] 谭维炽, 胡金刚. 航天器系统工程[M]. 北京: 中国科学技术出版社, 2009.TAN W C, HU J G. Spacecraft system engineering[M]. Beijing: China Science and Technology Press, 2009 (in Chinese). [3] TANNER C L, CLARK I G, CHEN A. Overview of the Mars 2020 parachute risk reduction activity[C]//Proceedings of the IEEE Aerospace Conference. Piscataway: IEEE Press, 2018: 1-11. [4] 杨贤文, 郝东, 易国庆, 等. 火星探测降落伞模型高速风洞变迎角试验技术[J]. 宇航学报, 2019, 40(12): 1461-1467. doi: 10.3873/j.issn.1000-1328.2019.12.010YANG X W, HAO D, YI G Q, et al. Variable angle of attack test technique of Mars exploration parachute model in high speed wind tunnel[J]. Journal of Astronautics, 2019, 40(12): 1461-1467 (in Chinese). doi: 10.3873/j.issn.1000-1328.2019.12.010 [5] 贾贺, 包进进, 荣伟. 设计参数及大气参数对降落伞充气性能的影响[J]. 航天返回与遥感, 2020, 41(3): 28-36.JIA H, BAO J J, RONG W. The design and atmospheric parameters influences on parachute inflation performance[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(3): 28-36(in Chinese). [6] 贾贺, 荣伟, 江长虹, 等. 探月三期月地高速再入返回器降落伞减速系统设计与实现[J]. 中国科学(技术科学), 2015, 45(2): 185-192. doi: 10.1360/N092014-00483JIA H, RONG W, JIANG C H, et al. The design and implementation of the parachute deceleration system on the circumlunar return and reentry spacecraft of 3rd phase of China lunar exploration program[J]. Scientia Sinica (Technologica), 2015, 45(2): 185-192 (in Chinese). doi: 10.1360/N092014-00483 [7] 王利荣. 降落伞理论与应用[M]. 北京: 宇航出版社, 1997.WANG L R. Parachute theory and apply[M]. Beijing: China Astronautic Publishing House, 1997(in Chinese). [8] WITKOWSKI A, KANDIS M, ADAMS D S. Mars science laboratory parachute system performance[C]//Proceedings of the AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013. [9] 唐见茂. 高性能纤维及复合材料[M]. 北京: 化学工业出版社, 2013.TANG J M. High performance fibers and composites[M]. Beijing: Chemical Industry Press, 2013 (in Chinese). [10] KUEH A B H. Buckling of sandwich columns reinforced by triaxial weave fabric composite skin-sheets[J]. International Journal of Mechanical Sciences, 2013, 66(4): 45-54. [11] 荣伟, 鲁媛媛, 包进进, 等. 火星探测器减速着陆过程中若干问题的研究[J]. 南京航空航天大学学报, 2016, 48(4): 445-453.RONG W, LU Y Y, BAO J J, et al. Several problems relative with descent and landing process of Mars explorer[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(4): 445-453 (in Chinese). [12] FUJINO T, TAKAHASHI T. Numerical simulation of Mars entry flight using magnetohydrodynamic parachute effect[C]//Proceedings of the 47th AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2016. [13] NAKAYA K, IAI M, OMAGARI K, et al. Formation deployment control for spinning tethered formation flying-simulations and ground experiments[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004. [14] CARTER J T, GREENE M. Deployment and retrieval simulation of a single tether satellite system[C]//Proceedings of the 20th Southeastern Symposium on System Theory. Piscataway: IEEE Press, 1988: 657-660. [15] 潘冬, 张越, 魏承, 等. 空间大型末端执行器绳索捕获动力学建模与仿真[J]. 振动与冲击, 2015, 34(1): 74-79.PAN D, ZHANG Y, WEI C, et al. Dynamic modeling and simulation on rope capturing by space large end effector[J]. Journal of Vibration and Shock, 2015, 34(1): 74-79 (in Chinese). [16] DAUM J S, MOLLMANN C M. Design and airdrop testing of the capsule parachute assembly system sub-scale main parachute[C]// Proceedings of the 24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017. [17] HENNINGS E J, PETERSEN M L, ANDERSON B, et al. NASA CPAS drogue textile riser feasibility study[C]//Proceedings of the AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2015: 1-24. [18] 黄伟. 火星探测器降落伞减速过程建模与仿真研究[D]. 长沙: 国防科技大学, 2018.HUANG W. Modeling and simulation of parachute deceleration process of Mars probe[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). [19] 鲁媛媛, 荣伟, 吴世通. 火星环境下降落伞拉直过程的动力学建模[J]. 航天返回与遥感, 2014, 35(1): 29-36. doi: 10.3969/j.issn.1009-8518.2014.01.005LU Y Y, RONG W, WU S T. Dynamic modeling of parachute deployment in Mars environment[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(1): 29-36 (in Chinese). doi: 10.3969/j.issn.1009-8518.2014.01.005 [20] 董富祥, 周志成, 曲广吉. 柔性航天器拖拽空间碎片动力学与控制仿真研究[J]. 动力学与控制学报, 2018, 16(2): 165-170. doi: 10.6052/1672-6553-2018-087DONG F X, ZHOU Z C, QU G J. Simulation study on dynamics and control of space debris tugged by flexible spacecraft[J]. Journal of Dynamics and Control, 2018, 16(2): 165-170 (in Chinese). doi: 10.6052/1672-6553-2018-087 [21] 王崴, 周诚, 杨云, 等. 基于改进弹簧-质点模型的柔性绳索仿真[J]. 计算机辅助设计与图形学学报, 2015, 27(11): 2230-2236.WANG W, ZHOU C, YANG Y, et al. Flexible rope simulation based on improved mass-spring mode[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(11): 2230-2236 (in Chinese). [22] 姜兵, 樊世超, 刘明辉. 月面重力模拟系统恒拉力绳索的动力学研究[J]. 航天器环境工程, 2012, 29(3): 278-282. doi: 10.3969/j.issn.1673-1379.2012.03.008JIANG B, FAN S C, LIU M H. Dynamics of cable in constant tension in lunar gravity simulation system[J]. Spacecraft Environment Engineering, 2012, 29(3): 278-282 (in Chinese). doi: 10.3969/j.issn.1673-1379.2012.03.008 [23] 张奇. 拦阻钩挂索冲击动力学及试验方法研究[D]. 南京: 南京航空航天大学, 2018.ZHANG Q. Study on impact dynamics and test method of arresting hook hanging cable[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). [24] 陈旭, 荣伟, 陈国良. “火星探测漫游者” 降落伞的研制[J]. 航天器工程, 2007, 16(2): 50-56. doi: 10.3969/j.issn.1673-8748.2007.02.008CHEN X, RONG W, CHEN G L. Development of the parachute of Mars exploration rover[J]. Spacecraft Engineering, 2007, 16(2): 50-56 (in Chinese). doi: 10.3969/j.issn.1673-8748.2007.02.008 [25] O’FARRELL C, KARLGAARD C, TYNIS J A, et al. Overview and reconstruction of the ASPIRE project’s SR01 supersonic parachute test[C]//Proceedings of the IEEE Aerospace Conference. Piscataway: IEEE Press, 2018: 1-18. [26] BATHE K J. 有限元法理论、格式与求解方法[M]. 轩建平译. 北京: 高等教育出版社, 2016.BATHE K J. Finite element procedures[M]. XUAN J P translated. Beijing: Higher Education Press, 2016(in Chinese). [27] YASTREBOV V A. Numerical methods in contact mechanics[M]. Hoboken: Wiley, 2013.