留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CFD/CSD耦合的高速射弹尾拍载荷特性研究

许云涛 檀大林 杨超

许云涛,檀大林,杨超. 基于CFD/CSD耦合的高速射弹尾拍载荷特性研究[J]. 北京航空航天大学学报,2023,49(9):2539-2546 doi: 10.13700/j.bh.1001-5965.2022.0939
引用本文: 许云涛,檀大林,杨超. 基于CFD/CSD耦合的高速射弹尾拍载荷特性研究[J]. 北京航空航天大学学报,2023,49(9):2539-2546 doi: 10.13700/j.bh.1001-5965.2022.0939
XU Y T,TAN D L,YANG C. Study on tail-slap load characteristics of high-speed projectile based on CFD/CSD coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2539-2546 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0939
Citation: XU Y T,TAN D L,YANG C. Study on tail-slap load characteristics of high-speed projectile based on CFD/CSD coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2539-2546 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0939

基于CFD/CSD耦合的高速射弹尾拍载荷特性研究

doi: 10.13700/j.bh.1001-5965.2022.0939
详细信息
    通讯作者:

    E-mail:yangchao@buaa.edu.cn

  • 中图分类号: TJ630

Study on tail-slap load characteristics of high-speed projectile based on CFD/CSD coupling

More Information
  • 摘要:

    为提高射弹尾拍载荷的预测精度,建立了一套基于计算流体动力学(CFD)/计算结构动力学(CSD)双向耦合分析的计算方法和程序。射弹流体计算主控方程采用耦合SSTk-ω湍流模型和Schnerr-Sauer空化模型的Navier-Stokes方程,射弹结构计算采用基于模态叠加法简化的结构动力学方程,流固耦合界面插值采用径向基函数法,网格变形采用弹簧网格法。分别对泡型计算方法和流固耦合方法进行验证,在此基础上,计算对比1 000 m/s速度下射弹刚体和弹性体的尾拍泡型、结构变形和尾拍流体载荷特性差异。计算表明:弹性体尾拍过程,射弹泡型会产生弹身“二次拍击”、“局部沾湿”和沾湿面积增大等特殊现象,结构变形由弹性一弯模态主导,较大的变形引起流体载荷增大27%~105%,尾拍姿态角增大13%,尾拍频率增加20%,流固耦合效应对尾拍泡型、尾拍载荷和尾拍弹道均产生了较强的影响。

     

  • 图 1  CFD/CSD双向流固耦合迭代流程

    Figure 1.  Two-way CFD/CSD fluid-structural coupling iterative process

    图 2  本文泡型与试验数据及经验公式对比

    Figure 2.  Comparison of cavity shape in this paper with experimental data and empirical formula

    图 3  广义位移时间曲线(Ma = 0.96)

    Figure 3.  Curves of generalized displacement time (Ma = 0.96)

    图 4  超空泡射弹模型

    Figure 4.  Model of supercavitating projectile

    图 5  流体计算域及边界条件示意图

    Figure 5.  Schematic diagram of fluid calculation domain and boundary conditions

    图 6  流场网格无关性分析

    Figure 6.  Independent analysis of flow field mesh

    图 7  流场网格模型

    Figure 7.  Mesh of flow field

    图 8  结构网格模型

    Figure 8.  Mesh of structural model

    图 9  3阶弹性模态

    Figure 9.  First three order elastic modes

    图 10  刚体与弹性体尾拍运动泡型对比

    Figure 10.  Comparison of cavity profiles between rigid body and elastic body during tail-slapping

    图 11  典型节点y向变形的峰值分布

    Figure 11.  Distribution of peak deformation of typical nodes

    图 12  刚体与弹性体尾拍流体载荷及俯仰角对比

    Figure 12.  Comparisons of loads and pitch angle between rigid body and elastic body during tail-slapping

    表  1  超空泡射弹材料参数

    Table  1.   Material parameters of supercavitating projectile

    部位材料弹性模量/GPa密度/(kg·m−3)泊松比
    锥段钨合金31217 5000.3
    柱段2107 8500.3
    下载: 导出CSV

    表  2  刚体与弹性体尾拍流体载荷特性对比

    Table  2.   Comparison of load characteristics between rigid body and elastic body during tail-slapping

    类型 尾拍引起
    的轴向力增
    量峰值/kN
    尾拍法向
    力峰值/kN
    俯仰力矩
    峰值/(kN·m)
    尾拍姿态
    角峰值/(°)
    尾拍频率/Hz
    刚体1.354.210.215.83329
    弹性体1.726.950.436.59394
    变化量0.372.740.220.7665
     注:尾拍引起的轴向力增量峰值、尾拍法向力峰值、俯仰力矩峰值、尾拍姿态角峰值、尾拍频率的变化百分比分别为27%,65%,105%,13%,20%。
    下载: 导出CSV
  • [1] 潘森森, 彭晓星. 空化机理[M]. 北京: 国防工业出版社, 2013.

    PAN S S, PENG X X. Physical mechanism of cavitation[M]. Beijing: National Defense Industry Press, 2013(in Chinese).
    [2] 熊天红, 易文俊. 高速射弹超空泡减阻试验研究与数值模拟分析[J]. 工程力学, 2009, 26(8): 174-178.

    XIONG T H, YI W J. Experimental research and numerical simulation of supercavity drag reduction of a high speed projectile[J]. Engineering Mechanics, 2009, 26(8): 174-178(in Chinese).
    [3] 曹伟, 魏英杰, 王聪, 等. 超空泡技术现状、问题与应用[J]. 力学进展, 2006, 36(4): 571-579.

    CAO W, WEI Y J, WANG C, et al. Current status, problems and applications of supercavitation technology[J]. Advances in Mechanics, 2006, 36(4): 571-579(in Chinese).
    [4] 杨莉, 张庆明. 超空泡技术的应用现状和发展趋势[J]. 战术导弹技术, 2006(5): 6-10. doi: 10.3969/j.issn.1009-1300.2006.05.002

    YANG L, ZHANG Q M. Current application and perspectives on supercavitation technology research[J]. Tactical Missile Technology, 2006(5): 6-10(in Chinese). doi: 10.3969/j.issn.1009-1300.2006.05.002
    [5] 黄闯. 跨声速超空泡射弹的弹道特性研究[D]. 西安: 西北工业大学, 2017.

    HUANG C. Research of trajectory characteristics of supersonic-supercavitating projectiles[D]. Xi’an: Northwestern Polytechnical University, 2017(in Chinese).
    [6] 魏英杰, 何乾坤, 王聪, 等. 超空泡射弹尾拍问题研究进展[J]. 舰船科学技术, 2013, 35(1): 7-15.

    WEI Y J, HE Q K, WANG C, et al. Review of study on the tail-slap problems of supercavitating projectile[J]. Ship Science and Technology, 2013, 35(1): 7-15(in Chinese).
    [7] 郝常乐, 党建军, 陈长盛, 等. 基于双向流固耦合的超空泡射弹入水研究[J]. 力学学报, 2022, 54(3): 678-687.

    HAO C L, DANG J J, CHEN C S, et al. Numerical study on water entry process of supercavitating projectile by considering bidirectional fluid structure interaction effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 678-687(in Chinese).
    [8] CHEN C, ZHANG A M, CHEN J Q, et al. SPH simulations of water entry problems using an improved boundary treatment[J]. Ocean Engineering, 2021, 238: 109679. doi: 10.1016/j.oceaneng.2021.109679
    [9] LI Y, SUN T Z, ZONG Z, et al. Dynamic crushing of a dedicated buffer during the high-speed vertical water entry process[J]. Ocean Engineering, 2021, 236: 109526. doi: 10.1016/j.oceaneng.2021.109526
    [10] 张劲生. 超空泡运动体尾拍冲击振动特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    ZHANG J S. Research on impact and vibration characteristic of supercavitating high-speed bodies with tail-slaps[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [11] 梁景奇, 王瑞, 徐保成, 等. 攻角对高速射弹入水过程影响研究[J]. 兵器装备工程学报, 2020, 41(7): 23-28. doi: 10.11809/bqzbgcxb2020.07.006

    LIANG J Q, WANG R, XU B C, et al. Research on influence of angle of attack on process of high-speed water-entry projectile[J]. Journal of Ordnance Equipment Engineering, 2020, 41(7): 23-28(in Chinese). doi: 10.11809/bqzbgcxb2020.07.006
    [12] 王强, 侯宇, 金子涵, 等. 基于双向流固耦合的柔性扑翼变形数值研究[J]. 飞行力学, 2021, 39(3): 27-33.

    WANG Q, HOU Y, JIN Z H, et al. Numerical study on the deformation of flexible flapping wing based on bidirectional fluid-solid coupling[J]. Flight Dynamics, 2021, 39(3): 27-33(in Chinese).
    [13] 秦杨, 易文俊, 管军. 超空泡射弹高速倾斜入水的空化流动数值模拟[J]. 兵器装备工程学报, 2019, 40(7): 99-104. doi: 10.11809/bqzbgcxb2019.07.020

    QIN Y, YI W J, GUAN J. Numerical simulation for cavitation flow of high-speed rotating body oblique entrying into water[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 99-104(in Chinese). doi: 10.11809/bqzbgcxb2019.07.020
    [14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [15] 谢亮, 徐敏, 李杰, 等. 基于CFD/CSD耦合的颤振与动载荷分析方法[J]. 振动与冲击, 2012, 31(3): 106-110. doi: 10.3969/j.issn.1000-3835.2012.03.022

    XIE L, XU M, LI J, et al. Flutter and dynamic analysis based on CFD/CSD coupling method[J]. Journal of Vibration and Shock, 2012, 31(3): 106-110(in Chinese). doi: 10.3969/j.issn.1000-3835.2012.03.022
    [16] 许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报, 2012, 33(11): 1947-1957.

    XU Y T, WU Z G, YANG C. Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1947-1957(in Chinese).
    [17] 林言中, 陈兵, 徐旭. 基于径向基函数插值的气动弹性计算方法[J]. 北京航空航天大学学报, 2014, 40(7): 953-958. doi: 10.13700/j.bh.1001-5965.2013.0460

    LIN Y Z, CHEN B, XU X. Numerical method of aeroelasticity based on radial basis function interpolation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7): 953-958(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0460
    [18] 周璇, 李水乡, 陈斌. 非结构动网格生成的弹簧-插值联合方法[J]. 航空学报, 2010, 31(7): 1389-1395.

    ZHOU X, LI S X, CHEN B. Spring-interpolation approach for generating unstructured dynamic meshes[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1389-1395(in Chinese).
    [19] HRUBES J D. High-speed imaging of supercavitating underwater projectiles[J]. Experiments in Fluids, 2001, 30(1): 57-64. doi: 10.1007/s003480000135
    [20] 陈伟善. 高速超空泡射弹尾拍运动特性数值研究[D]. 南京: 南京理工大学, 2020.

    CHEN W S. Numerical study on the motion characteristics of the tail-slap of the high-speed supercavitating projectile[D]. Nanjing: Nanjing University of Science and Technology, 2020(in Chinese).
    [21] 罗格维诺维奇. 自由边界流动的水动力学[M]. 施红辉译. 上海: 上海交通大学出版社, 2012: 97-126.

    LOGVINOVICH G V. Hydrodynamics of free-boundary flow[M]. SHI H H, translated. Shanghai: Shanghai Jiao Tong University Press, 2012: 97-126(in Chinese).
    [22] SAVCHENKO Y N. Supercavitation-problems and perspectives[C]// 4th International Symposium on Cavitation, 2001: 1-8.
    [23] JK YATES E C. AGARD standard aeroelastic configuration for dynamic response I-wing-445.6: NASA-TM-100492[R]. Washington, D. C. :NASE, 1988.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  80
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 录用日期:  2023-02-26
  • 网络出版日期:  2023-04-03
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答