留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于亥姆霍兹共振器的中心分级燃烧室燃烧振荡控制

严熙成 韩猛 韩啸 张弛 王建臣 何沛 高贤智

严熙成,韩猛,韩啸,等. 基于亥姆霍兹共振器的中心分级燃烧室燃烧振荡控制[J]. 北京航空航天大学学报,2024,50(12):3854-3862 doi: 10.13700/j.bh.1001-5965.2022.0944
引用本文: 严熙成,韩猛,韩啸,等. 基于亥姆霍兹共振器的中心分级燃烧室燃烧振荡控制[J]. 北京航空航天大学学报,2024,50(12):3854-3862 doi: 10.13700/j.bh.1001-5965.2022.0944
YAN X C,HAN M,HAN X,et al. Control of combustion oscillation in a central-staged combustor based on Helmholtz resonator[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3854-3862 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0944
Citation: YAN X C,HAN M,HAN X,et al. Control of combustion oscillation in a central-staged combustor based on Helmholtz resonator[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3854-3862 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0944

基于亥姆霍兹共振器的中心分级燃烧室燃烧振荡控制

doi: 10.13700/j.bh.1001-5965.2022.0944
基金项目: 国家自然科学基金(52106128);国家科技重大专项(J2019-Ⅲ-0002-0045);中央高校基本科研业务费专项资金
详细信息
    通讯作者:

    E-mail:han_xiao@buaa.edu.cn

  • 中图分类号: V231.2

Control of combustion oscillation in a central-staged combustor based on Helmholtz resonator

Funds: National Natural Science Foundation of China (52106128); National Science and Technology Major Project (J2019-Ⅲ-0002-0045); The Fundamental Research Funds for the Central Universities
More Information
  • 摘要:

    中心分级贫油预混预蒸发(LPP)燃烧室被广泛用于航空发动机和燃气轮机中用于降低排放。但是此类燃烧室在运行过程中遇到了较多的燃烧振荡问题。研究了亥姆霍兹共振器对航空发动机中心分级LPP燃烧室中燃烧振荡的控制效果。实验在以液态航空煤油为燃料的单头部模型燃烧室上开展,涉及中温中压和高温高压2种工况环境。基于声学仿真结果设计了紧凑的亥姆霍兹共振器,体积仅为80 mL和160 mL。实验结果表明,工作频率与燃烧振荡频率相近的亥姆霍兹共振器能显著降低振荡的幅值。中温中压实验中,在火焰分级比25.1%、头部当量比0.6的工况下,亥姆霍兹共振器能完全消除燃烧振荡;高温高压实验中,振荡幅值降低约90%。同时,设计合理的共振器在不同分级比下控制效果略有不同,振荡幅值下降幅度为69.9%~98.9%。另外,声学仿真结果显示,共振器的加入对系统的声学特征模态影响极小,与实验结果吻合。结构紧凑的亥姆霍兹共振器具有在航空发动机LPP燃烧室中抑制燃烧振荡的潜力。

     

  • 图 1  装有亥姆霍兹共振器的中温中压燃烧实验台

    Figure 1.  Combustion bench with Helmholtz resonator in medium temperature and medium pressure experiment

    图 2  COMSOL计算模型及固有模态分布

    Figure 2.  COMSOL calculation model and distribution of intrinsic mode

    图 3  基准工况点3下动态压力脉动处理结果

    Figure 3.  Treatment results of dynamic pressure pulsation at point 3 of basic operating condition

    图 4  安装在中温中压燃烧实验台上的亥姆霍兹共振器

    Figure 4.  Helmholtz resonator applied on combustion bench in medium temperature and medium pressure experiment

    图 5  4个模态下的相对声压分布

    Figure 5.  Relative sound pressure distribution under four modes

    图 6  HR-M共振器的吸声曲线

    Figure 6.  Sound absorption curve of HR-M resonator

    图 7  高温高压实验中使用的亥姆霍兹共振器

    Figure 7.  Helmholtz resonators used in high temperature and high pressure experiment

    图 8  中温中压实验振荡幅值对比

    Figure 8.  Comparison of oscillation amplitude in medium temperature and medium pressure experiment

    图 9  中温中压实验振荡频率对比

    Figure 9.  Comparison of oscillation frequency in medium temperature and medium pressure experiment

    图 10  重复实验中振荡幅值对比

    Figure 10.  Comparison of oscillation amplitude in repeated experiments

    图 11  中温中压实验相空间重构图

    Figure 11.  Phase space reconstruction in medium temperature and medium pressure experiment

    图 12  不同火焰分级比下的压力脉动时序图

    Figure 12.  Sequence chart of pressure pulsation at different flame stage ratios

    图 13  不同火焰分级比下的相空间重构图

    Figure 13.  Phase space reconstruction at different flame stage ratios

    图 14  高温高压实验振荡幅值对比

    Figure 14.  Comparison of oscillation amplitude in high temperature and high pressure experiment

    表  1  中温中压实验基准工况和振荡特性

    Table  1.   Basic operating conditions and oscillation characteristic for medium temperature and medium pressure experiment

    工况 质量流量 火焰
    分级比/
    %
    头部
    当量比
    振荡
    频率/Hz
    振荡
    幅值/
    kPa
    预燃级燃料/
    (kg·h−1)
    主燃级燃料/
    (kg·h−1)
    M1 4.17 35.6 10.5 0.6 531 6.97
    M2 6.04 33.4 15.3 0.6 536 6.53
    M3 7.85 31.1 20.2 0.6 528 6.7
    M4 9.69 28.9 25.1 0.6 526 6.11
    下载: 导出CSV

    表  2  高温高压实验基准工况和振荡特性

    Table  2.   Basic operating conditions and oscillation characteristic for high temperature and high pressure experiment

    工况 质量流量 火焰
    分级比/
    %
    头部
    当量比
    振荡
    频率/Hz
    振荡
    幅值/
    kPa
    预燃级燃料/
    (kg·h−1)
    主燃级燃料/
    (kg·h−1)
    H1 22.3 127 14.9 0.58 507 20.79
    H2 23.2 132 14.9 0.61 508 22.16
    H3 24.4 138 15.1 0.64 508 24
    H4 19.8 143 12.2 0.64 509 20.81
    下载: 导出CSV

    表  3  中温中压实验的亥姆霍兹共振器参数

    Table  3.   Parameters of Helmholtz resonator in medium temperature and medium pressure experiment

    共振器 背腔高度/
    mm
    背腔直径/
    mm
    颈部长度/
    mm
    体积/
    mL
    特征频率/
    Hz
    预估
    吸声率/dB
    HR-L 85 36 26 87 496 6.28
    HR-M 80 36 26 82 524 9.77
    HR-H 75 36 26 76 556 10.91
    下载: 导出CSV

    表  4  中温中压实验工况

    Table  4.   Operating conditions in medium temperature and medium pressure experiment

    工况 质量流量 火焰
    分级比/
    %
    振荡
    频率/Hz
    振荡
    幅值/
    kPa
    预燃级燃料/
    (kg·h−1)
    主燃级燃料/
    (kg·h−1)
    M5 5.13 39 11.6 534 4.76
    M6 7.07 36.14 16.4 530 2.98
    M7 8.79 33.83 20.6 524 1.85
    M8 10.36 31.33 24.9 0.34
    下载: 导出CSV
  • [1] 黄勇, 林宇震, 樊未军, 等. 燃烧与燃烧室[M]. 北京: 北京航空航天大学出版社, 2009.

    HUANG Y, LIN Y Z, FAN W J, et al. Combustion and combustion chambers[M]. Beijing: Beihang University Press, 2009(in Chinese).
    [2] STEINBERG A M, BOXX I, STÖHR M, et al. Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor[J]. Combustion and Flame, 2010, 157(12): 2250-2266. doi: 10.1016/j.combustflame.2010.07.011
    [3] LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms and modeling[M]. Reston: AIAA, 2005.
    [4] HAN X, LAERA D, MORGANS A S, et al. The effect of stratification ratio on the macrostructure of stratified swirl flames: Experimental and numerical study[C]//Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. New York: ASME, 2018.
    [5] HAN X, LAERA D, MORGANS A S, et al. Flame macrostructures and thermoacoustic instabilities in stratified swirling flames[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5377-5384. doi: 10.1016/j.proci.2018.06.147
    [6] ZHAO D, LU Z L, ZHAO H, et al. A review of active control approaches in stabilizing combustion systems in aerospace industry[J]. Progress in Aerospace Sciences, 2018, 97: 35-60. doi: 10.1016/j.paerosci.2018.01.002
    [7] SOHN C H, PARK J H. A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators[J]. Aerospace Science and Technology, 2011, 15(8): 606-614. doi: 10.1016/j.ast.2010.12.004
    [8] 马大猷. 亥姆霍兹共鸣器[J]. 声学技术, 2002, 21(增刊1): 2-3. doi: 10.3969/j.issn.1000-3630.2002.01.001

    MA D Y. Helmholtz resonators[J]. Technical Acoustics, 2002, 21(Sup1): 2-3(in Chinese). doi: 10.3969/j.issn.1000-3630.2002.01.001
    [9] 高原, 朱民. 亥姆霍兹共振器抑制振荡燃烧理论分析[J]. 工程热物理学报, 2009, 30(6): 1048-1050. doi: 10.3321/j.issn:0253-231X.2009.06.041

    GAO Y, ZHU M. Theoretical analysis of combustion oscillation suppression with Helmholtz resonators[J]. Journal of Engineering Thermophysics, 2009, 30(6): 1048-1050(in Chinese). doi: 10.3321/j.issn:0253-231X.2009.06.041
    [10] HOWE M S. Influence of cross-sectional shape on the conductivity of a wall aperture in mean flow[J]. Journal of Sound and Vibration, 1997, 207(5): 601-616. doi: 10.1006/jsvi.1997.1103
    [11] DUPÈRE I D J, DOWLING A P. The use of Helmholtz resonators in a practical combustor[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(2): 268-275. doi: 10.1115/1.1806838
    [12] YANG S H, WANG J C, WANG Z C, et al. Experimental investigation of dual-swirl spray flame in a fuel staged optical model combustor with laser diagnostics[C]//Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021, 84942: V03AT04A015.
    [13] LIU Z H, ZHOU H, FANG H, et al. Combustion instability control performance of an improved Helmholtz resonator in the presence of bias flow[J]. Aerospace Science and Technology, 2021, 119: 107153. doi: 10.1016/j.ast.2021.107153
    [14] RICHARDS G A, STRAUB D L, ROBEY E H. Passive control of combustion dynamics in stationary gas turbines[J]. Journal of Propulsion and Power, 2003, 19(5): 795-810. doi: 10.2514/2.6195
    [15] STEELE R C, COWELL L H, CANNON S M, et al. Passive control of combustion instability in lean premixed combustors[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(3): 412-419. doi: 10.1115/1.1287166
    [16] GYSLING D L, COPELAND G S, MCCORMICK D C, et al. Combustion system damping augmentation with Helmholtz resonators[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(2): 269-274. doi: 10.1115/1.483205
    [17] BELLUCCI V, FLOHR P, PASCHEREIT C O, et al. On the use of Helmholtz resonators for damping acoustic pulsations in industrial gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 271-275. doi: 10.1115/1.1473152
    [18] PANDALAI R, MONGIA H. Combustion instability characteristics of industrial engine dry low emission combustion systems[C]// Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 1998.
    [19] WANG Z C, HUI X, WANG J C, et al. Effects of axial velocity of main stage on the performances of a centrally staged LPP combustor[C]//Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, 2019, 58615: V04AT04A061.
    [20] ABARBANEL H D I, BROWN R, SIDOROWICH J J, et al. The analysis of observed chaotic data in physical systems[J]. Reviews of Modern Physics, 1993, 65(4): 1331-1392. doi: 10.1103/RevModPhys.65.1331
    [21] WANG B, ZHANG C, LIN Y Z, et al. Influence of main swirler vane angle on the ignition performance of TeLESS-II combustor[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(1): 011501. doi: 10.1115/1.4034154
    [22] PANTON R L, MILLER J M. Resonant frequencies of cylindrical Helmholtz resonators[J]. The Journal of the Acoustical Society of America, 1975, 57(6): 1533-1535. doi: 10.1121/1.380596
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 录用日期:  2023-04-03
  • 网络出版日期:  2023-05-11
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答