-
摘要:
舵面效能损耗会直接影响柔性飞机阵风减缓效果,考虑舵面效能损耗是主动阵风减缓控制系统设计的关键。针对柔性飞机遭遇阵风干扰问题,以某大展弦比柔性飞机模型为对象,建立包含刚体运动和弹性模态的柔性飞机结构动力学模型,考虑舵面作动器存在舵面效能损耗的情况,设计一种自适应观测器实时在线估计舵面作动器效能因子,重构和求解自适应主动容错
H ∞控制器,实现柔性飞机阵风载荷减缓。离散和连续阵风激励下的柔性飞机开/闭环时域响应仿真表明:在舵面无效能损耗情况下,H ∞控制与比例-积分-微分(PID)控制均能达到较好的减缓效果,H ∞控制相较于PID控制响应时间更快;在舵面存在效能损耗情况下,自适应观测器在4 s内能够完成效能因子评估,基于该效能因子设计的H ∞控制器能够达到与理想情况相当的阵风减缓效果。Abstract:The rudder surface effectiveness loss directly affects the gust alleviation effect of flexible aircraft, considering the rudder surface effectiveness loss is the key to the design of an active gust alleviation control system. In order to tackle the issue of gust interference in flexible aircraft, a high aspect ratio flexible aircraft model is utilized to create a structural dynamics model of the flexible aircraft that takes into account elastic modes and rigid body motion. Additionally, the rudder effectiveness loss of the rudder surface actuator is taken into consideration. An adaptive observer is designed to estimate the efficiency factor of the rudder surface actuator online in real-time, reconstruct and solve the adaptive active fault-tolerant controller, and achieve aircraft gust load alleviation. Under discrete and continuous gust excitation, simulation of the aircraft’s open/closed loop time domain response demonstrates that both control and proportional-integral-derivative (PID) control can achieve better alleviation effects under the rudder surface ineffective energy loss, and that control’s response time is faster than PID control’s. Under the rudder efficiency loss, the adaptive observer can complete the efficiency factor evaluation in less than 4 seconds, and the controller, which is designed based on this efficiency factor, can achieve gust alleviation that is comparable to the ideal scenario.
-
表 1 某大展弦比柔性飞机主要结构参数
Table 1. Main structural parameters of flexible aircraft with large aspect ratio
参数 数值 翼展/m 4.5 平均气动弦长/m 0.29 展弦比 15.52 机身长/m 2.2 尾翼展长/m 0.8 V尾夹角/(°) 110 表 2 调节增益分析
Table 2. Adjustment gain analysis
调节增益 调节次数 调节时间/s 调节幅值/(N·m) 100 150 80 4.00 28.115 8 190 69 3.45 24.224 0 200 68 3.40 23.793 4 220 65 3.25 23.204 4 230 64 3.20 22.843 6 240 63 3.15 22.590 5 250 62 3.10 22.225 8 -
[1] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4): 1011-1033.YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1011-1033(in Chinese). [2] 杨超, 邱祈生, 周宜涛, 等. 飞机阵风响应减缓技术综述[J]. 航空学报, 2022, 43(10): 208-248.YANG C, QIU Q S, ZHOU Y T, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 208-248(in Chinese). [3] 金长江, 肖业伦. 大气扰动中的飞行原理[M]. 北京: 国防工业出社, 1992.JIN C J, XIAO Y L. Flight principle with atmosphere turbulence [M]. Beijing: National Defence Industry Press, 1992(in Chinese). [4] WU Z G, CHEN L, YANG C. Study on gust alleviation control and wind tunnel test[J]. Science China Technological Sciences, 2013, 56(3): 527350. [5] 杨澜, 安朝, 谢长川, 等. 基于状态空间涡格法的阵风减缓分析研究[J]. 北京航空航天大学学报, 2022, 48(7): 1200-1209.YANG L, AN C, XIE C C, et al. Gust load alleviation analysis based on vortex lattice method in state-space form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1200-1209(in Chinese). [6] GANGSAAS D, LY U, NORMAN D. Practical gust load alleviation and flutter suppression control laws based on a LQG methodology[C]//Proceedings of the 19th Aerospace Sciences Meeting. Reston: AIAA, 1981: 21. [7] 吴志刚, 杨超. 主动气动弹性机翼的颤振主动抑制与阵风减缓研究[J]. 机械强度, 2003, 25(1): 32-35. doi: 10.3321/j.issn:1001-9669.2003.01.009WU Z G, YANG C. Investigation on active flutter suppression and gust alleviation for an active aeroelastic wing[J]. Journal of Mechanical Strength, 2003, 25(1): 32-35(in Chinese). doi: 10.3321/j.issn:1001-9669.2003.01.009 [8] AOUF N, BOULET B, BOTEZ R M. Robust gust load alleviation for a flexible aircraft[J]. Canadian Aeronautics and Space Journal, 2000, 46(3): 131-139. [9] WILDSCHEK A, MAIER R, HROMČÍK M, et al. Hybrid controller for gust load alleviation and ride comfort improvement using direct lift control flaps[C]//Proceedings of the 3rd European Conference for Aerospace Sciences. Paris: EUCASS, 2009: 21. [10] WANG Y N, WYNN A, PALACIOS R. Model-predictive control of flexible aircraft dynamics using nonlinear reduced-order models[C]//Proceedings of the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016: 0711. [11] BARZGARAN B, QUENZER J D, MESBAHI M, et al. Real-time model predictive control for gust load alleviation on an aeroelastic wind tunnel test article[C]//Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021: 1-18. [12] ETKIN B. Turbulent wind and its effect on flight[J]. Journal of Aircraft, 1981, 18(5): 327-345. doi: 10.2514/3.57498 [13] 吴森堂, 费玉华. 飞行控制系统[M]. 北京: 北京航空航天大学出版社, 2005: 392-419.WU S T, FEI Y H. Flight control[M]. Beijing: Beihang University Press, 2005: 392-419(in Chinese). [14] YANG Y X, WU Z G, YANG C. Control surface efficiency analysis and utilization of an elastic airplane for maneuver loads alleviation[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013: 1487. [15] 杨阳, 杨超, 吴志刚. 基于舵机动态特性测试的阵风减缓控制系统设计[J]. 振动与冲击, 2020, 39(4): 106-112.YANG Y, YANG C, WU Z G. A design of gust alleviation control system based on test of actuator’s dynamic characteristics[J]. Journal of Vibration and Shock. 2020, 39(4): 106-112(in Chinese). [16] FAN W, LIU H H, KWONG R. The influence of control surface faults on flexible aircraft[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2016: 0082. [17] HAGHIGHAT S, LIU H H T, MARTINS J R R A. Model-predictive gust load alleviation controller for a highly flexible aircraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(6): 1751-1766. doi: 10.2514/1.57013 [18] ZHANG Y M, JIANG J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control, 2008, 32: 229-252. doi: 10.1016/j.arcontrol.2008.03.008 [19] EDWARDS C, LOMBAERTS T, SMAILI H. Fault tolerant flight control: A benchmark challenge[M]. Berlin: Springer, 2010. [20] STEINBERG M. Historical overview of research in reconfigurable flight control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2005, 219(4): 263-275. doi: 10.1243/095441005X30379 [21] YU M J, RAHMAN Y, ATKINS E M, et al. Minimal modeling adaptive control of the NASA generic transport model with unknown control-surface faults[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2013: 4693. [22] FAN W, LIU H H, KWONG R. Gust load alleviation control for a flexible aircraft with loss of control effectiveness[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2017: 1721. [23] PUSCH M, KIER T M, TANG M, et al. Advanced gust load alleviation using dynamic control allocation[C]//Proceedings of the AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: 0439. [24] HOUBOLT J C. Design manual for vertical gusts based on power spectral techniques[Z]. Princeton: Aeronautical Research Associates of Princeton Inc NJ, 1970. [25] MOORHOUSE D J, WOODCOCK R J. US military specification: Flying qualities of piloted airplanes: MIL-F-8785C[Z]. Washington, D.C.: US Department of Defense, 1980. [26] ZHOU K, DOYLE J C. Essentials of robust control[M]. Upper Saddle River: Prentice Hall, 1998. [27] WANG H, DALEY S. Actuator fault diagnosis: An adaptive observer-based technique[J]. IEEE Transactions on Automatic Control, 2002, 41(7): 1073-1078. [28] GOLDHIRSCH I, SULEM P L, ORSZAG S A. Stability and Lyapunov stability of dynamical systems: A differential approach and a numerical method[J]. Physica D: Nonlinear Phenomena, 1987, 27(3): 311-337. doi: 10.1016/0167-2789(87)90034-0 -