Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑舵面效能柔性飞机阵风减缓控制系统

刘易斯 杨佑绪 刘燚 成志勇 余灵富

王 磊, 赵育善. 使用动量交换装置的滑模姿态控制[J]. 北京航空航天大学学报, 2009, 35(11): 1388-1392.
引用本文: 刘易斯,杨佑绪,刘燚,等. 考虑舵面效能柔性飞机阵风减缓控制系统[J]. 北京航空航天大学学报,2025,51(1):248-256 doi: 10.13700/j.bh.1001-5965.2022.0952
Wang Lei, Zhao Yushan. Sliding mode attitude control using momentum exchange device[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11): 1388-1392. (in Chinese)
Citation: LIU Y S,YANG Y X,LIU Y,et al. Gust alleviation control system of flexible aircraft considering rudder efficiency[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):248-256 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0952

考虑舵面效能柔性飞机阵风减缓控制系统

doi: 10.13700/j.bh.1001-5965.2022.0952
基金项目: 基础加强项目基金(2022-JCJQ-JJ-1135);江西省“双千计划”人才项目(CK202006470)
详细信息
    通讯作者:

    E-mail:zgdy_1@163.com

  • 中图分类号: V215.3

Gust alleviation control system of flexible aircraft considering rudder efficiency

Funds: 173 Plan (2022-JCJQ-JJ-1135); Jiangxi Province “Double Thousand Plan” Talent Project (CK202006470)
More Information
  • 摘要:

    舵面效能损耗会直接影响柔性飞机阵风减缓效果,考虑舵面效能损耗是主动阵风减缓控制系统设计的关键。针对柔性飞机遭遇阵风干扰问题,以某大展弦比柔性飞机模型为对象,建立包含刚体运动和弹性模态的柔性飞机结构动力学模型,考虑舵面作动器存在舵面效能损耗的情况,设计一种自适应观测器实时在线估计舵面作动器效能因子,重构和求解自适应主动容错H控制器,实现柔性飞机阵风载荷减缓。离散和连续阵风激励下的柔性飞机开/闭环时域响应仿真表明:在舵面无效能损耗情况下,H控制与比例-积分-微分(PID)控制均能达到较好的减缓效果,H控制相较于PID控制响应时间更快;在舵面存在效能损耗情况下,自适应观测器在4 s内能够完成效能因子评估,基于该效能因子设计的H控制器能够达到与理想情况相当的阵风减缓效果。

     

  • 图 1  主动容错控制系统框架

    Figure 1.  Active fault-tolerant control system framework

    图 2  自适应容错H控制系统框架

    Figure 2.  Adaptive fault-tolerant H control system framework

    图 3  广义控制系统

    Figure 3.  Generalized control system

    图 4  具有加权函数的广义控制系统

    Figure 4.  Generalized control systems with weighting functions

    图 5  控制器重构步骤流程

    Figure 5.  Steps and flows of controller reconfiguration

    图 6  大展弦比柔性飞机舵面布置

    Figure 6.  Rudder surface arrangement of flexible aircraft with large aspect ratio

    图 7  “1-cos”阵风激励理想情况下的翼根弯矩

    Figure 7.  Wing-root bending moment under nominal “1-cos” gust excitation

    图 8  “1-cos”阵风激励理想情况下的舵面偏转角

    Figure 8.  Rudder surface deflection angle under nominal “1-cos” gust excitation

    图 9  Dryden阵风激励理想情况下的翼根弯矩

    Figure 9.  Wing-root bending moment under nominal of Dryden gust excitation

    图 10  Dryden阵风激励理想情况下的舵面偏转角

    Figure 10.  Rudder surface deflection angle under nominal Dryden gust excitation

    图 11  考虑效能损失“1-cos”阵风激励下估计效能因子

    Figure 11.  Estimation of efficiency factor under “1-cos” gust excitation considering efficiency loss

    图 12  考虑效能损失“1-cos”阵风激励下估计效能因子变化率

    Figure 12.  Estimated efficiency factor change rate under “1-cos” gust excitation considering efficiency loss

    图 13  考虑效能损失“1-cos”阵风激励下翼根弯矩

    Figure 13.  Wing-root bending moment under “1-cos” gust excitation considering efficiency loss

    图 14  考虑效能损失“1-cos”阵风激励下舵面偏转角

    Figure 14.  Rudder surface deflection angle under “1-cos” gust excitation considering efficiency loss

    图 15  考虑效能损失Dryden阵风激励下估计效能因子

    Figure 15.  Estimation of efficiency factor under Dryden gust excitation considering efficiency loss

    图 16  考虑效能损失Dryden阵风激励下估计效能因子变化率

    Figure 16.  Estimated efficiency factor change rate under Dryden gust excitation considering efficiency loss

    图 17  考虑效能损失Dryden阵风激励下翼根弯矩

    Figure 17.  Wing-root bending moment under Dryden gust excitation considering efficiency loss

    图 18  考虑效能损失Dryden阵风激励下舵面偏转角

    Figure 18.  Rudder surface deflection angle under Dryden gust excitation considering efficiency loss

    图 19  调节增益-效能因子分析

    Figure 19.  Adjustment gain-efficiency factor analysis

    图 20  调节增益-翼根弯矩分析

    Figure 20.  Adjustment gain-wing-root bending moment analysis

    表  1  某大展弦比柔性飞机主要结构参数

    Table  1.   Main structural parameters of flexible aircraft with large aspect ratio

    参数 数值
    翼展/m 4.5
    平均气动弦长/m 0.29
    展弦比 15.52
    机身长/m 2.2
    尾翼展长/m 0.8
    V尾夹角/(°) 110
    下载: 导出CSV

    表  2  调节增益分析

    Table  2.   Adjustment gain analysis

    调节增益 调节次数 调节时间/s 调节幅值/(N·m)
    100
    150 80 4.00 28.115 8
    190 69 3.45 24.224 0
    200 68 3.40 23.793 4
    220 65 3.25 23.204 4
    230 64 3.20 22.843 6
    240 63 3.15 22.590 5
    250 62 3.10 22.225 8
    下载: 导出CSV
  • [1] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4): 1011-1033.

    YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1011-1033(in Chinese).
    [2] 杨超, 邱祈生, 周宜涛, 等. 飞机阵风响应减缓技术综述[J]. 航空学报, 2022, 43(10): 208-248.

    YANG C, QIU Q S, ZHOU Y T, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 208-248(in Chinese).
    [3] 金长江, 肖业伦. 大气扰动中的飞行原理[M]. 北京: 国防工业出社, 1992.

    JIN C J, XIAO Y L. Flight principle with atmosphere turbulence [M]. Beijing: National Defence Industry Press, 1992(in Chinese).
    [4] WU Z G, CHEN L, YANG C. Study on gust alleviation control and wind tunnel test[J]. Science China Technological Sciences, 2013, 56(3): 527350.
    [5] 杨澜, 安朝, 谢长川, 等. 基于状态空间涡格法的阵风减缓分析研究[J]. 北京航空航天大学学报, 2022, 48(7): 1200-1209.

    YANG L, AN C, XIE C C, et al. Gust load alleviation analysis based on vortex lattice method in state-space form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1200-1209(in Chinese).
    [6] GANGSAAS D, LY U, NORMAN D. Practical gust load alleviation and flutter suppression control laws based on a LQG methodology[C]//Proceedings of the 19th Aerospace Sciences Meeting. Reston: AIAA, 1981: 21.
    [7] 吴志刚, 杨超. 主动气动弹性机翼的颤振主动抑制与阵风减缓研究[J]. 机械强度, 2003, 25(1): 32-35. doi: 10.3321/j.issn:1001-9669.2003.01.009

    WU Z G, YANG C. Investigation on active flutter suppression and gust alleviation for an active aeroelastic wing[J]. Journal of Mechanical Strength, 2003, 25(1): 32-35(in Chinese). doi: 10.3321/j.issn:1001-9669.2003.01.009
    [8] AOUF N, BOULET B, BOTEZ R M. Robust gust load alleviation for a flexible aircraft[J]. Canadian Aeronautics and Space Journal, 2000, 46(3): 131-139.
    [9] WILDSCHEK A, MAIER R, HROMČÍK M, et al. Hybrid controller for gust load alleviation and ride comfort improvement using direct lift control flaps[C]//Proceedings of the 3rd European Conference for Aerospace Sciences. Paris: EUCASS, 2009: 21.
    [10] WANG Y N, WYNN A, PALACIOS R. Model-predictive control of flexible aircraft dynamics using nonlinear reduced-order models[C]//Proceedings of the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016: 0711.
    [11] BARZGARAN B, QUENZER J D, MESBAHI M, et al. Real-time model predictive control for gust load alleviation on an aeroelastic wind tunnel test article[C]//Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021: 1-18.
    [12] ETKIN B. Turbulent wind and its effect on flight[J]. Journal of Aircraft, 1981, 18(5): 327-345. doi: 10.2514/3.57498
    [13] 吴森堂, 费玉华. 飞行控制系统[M]. 北京: 北京航空航天大学出版社, 2005: 392-419.

    WU S T, FEI Y H. Flight control[M]. Beijing: Beihang University Press, 2005: 392-419(in Chinese).
    [14] YANG Y X, WU Z G, YANG C. Control surface efficiency analysis and utilization of an elastic airplane for maneuver loads alleviation[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013: 1487.
    [15] 杨阳, 杨超, 吴志刚. 基于舵机动态特性测试的阵风减缓控制系统设计[J]. 振动与冲击, 2020, 39(4): 106-112.

    YANG Y, YANG C, WU Z G. A design of gust alleviation control system based on test of actuator’s dynamic characteristics[J]. Journal of Vibration and Shock. 2020, 39(4): 106-112(in Chinese).
    [16] FAN W, LIU H H, KWONG R. The influence of control surface faults on flexible aircraft[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2016: 0082.
    [17] HAGHIGHAT S, LIU H H T, MARTINS J R R A. Model-predictive gust load alleviation controller for a highly flexible aircraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(6): 1751-1766. doi: 10.2514/1.57013
    [18] ZHANG Y M, JIANG J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control, 2008, 32: 229-252. doi: 10.1016/j.arcontrol.2008.03.008
    [19] EDWARDS C, LOMBAERTS T, SMAILI H. Fault tolerant flight control: A benchmark challenge[M]. Berlin: Springer, 2010.
    [20] STEINBERG M. Historical overview of research in reconfigurable flight control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2005, 219(4): 263-275. doi: 10.1243/095441005X30379
    [21] YU M J, RAHMAN Y, ATKINS E M, et al. Minimal modeling adaptive control of the NASA generic transport model with unknown control-surface faults[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2013: 4693.
    [22] FAN W, LIU H H, KWONG R. Gust load alleviation control for a flexible aircraft with loss of control effectiveness[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2017: 1721.
    [23] PUSCH M, KIER T M, TANG M, et al. Advanced gust load alleviation using dynamic control allocation[C]//Proceedings of the AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: 0439.
    [24] HOUBOLT J C. Design manual for vertical gusts based on power spectral techniques[Z]. Princeton: Aeronautical Research Associates of Princeton Inc NJ, 1970.
    [25] MOORHOUSE D J, WOODCOCK R J. US military specification: Flying qualities of piloted airplanes: MIL-F-8785C[Z]. Washington, D.C.: US Department of Defense, 1980.
    [26] ZHOU K, DOYLE J C. Essentials of robust control[M]. Upper Saddle River: Prentice Hall, 1998.
    [27] WANG H, DALEY S. Actuator fault diagnosis: An adaptive observer-based technique[J]. IEEE Transactions on Automatic Control, 2002, 41(7): 1073-1078.
    [28] GOLDHIRSCH I, SULEM P L, ORSZAG S A. Stability and Lyapunov stability of dynamical systems: A differential approach and a numerical method[J]. Physica D: Nonlinear Phenomena, 1987, 27(3): 311-337. doi: 10.1016/0167-2789(87)90034-0
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  171
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 录用日期:  2023-03-08
  • 网络出版日期:  2023-03-27
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答