留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于共形几何代数的七杆巴氏桁架位置分析

黄昔光 吴一帆 刘东裕

黄昔光,吴一帆,刘东裕. 基于共形几何代数的七杆巴氏桁架位置分析[J]. 北京航空航天大学学报,2025,51(1):265-271 doi: 10.13700/j.bh.1001-5965.2022.0961
引用本文: 黄昔光,吴一帆,刘东裕. 基于共形几何代数的七杆巴氏桁架位置分析[J]. 北京航空航天大学学报,2025,51(1):265-271 doi: 10.13700/j.bh.1001-5965.2022.0961
HUANG X G,WU Y F,LIU D Y. Position analysis of seven-link Barranov truss based on conformal geometric algebra[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):265-271 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0961
Citation: HUANG X G,WU Y F,LIU D Y. Position analysis of seven-link Barranov truss based on conformal geometric algebra[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):265-271 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0961

基于共形几何代数的七杆巴氏桁架位置分析

doi: 10.13700/j.bh.1001-5965.2022.0961
基金项目: 

国家自然科学基金(51105003);北京市自然科学基金(3172010) 

详细信息
    通讯作者:

    E-mail:marchbupt@126.com

  • 中图分类号: TG112

Position analysis of seven-link Barranov truss based on conformal geometric algebra

Funds: 

National Natural Science Foundation of China (51105003); Beijing Natural Science Foundation (3172010) 

More Information
  • 摘要:

    机构位置分析是机构运动学和动力学研究的基础。针对传统机构位置分析理论旋转坐标变换矩阵运算繁琐、多元高次非线性方程组求解困难等问题,提出了一种七杆巴氏桁架的位置分析共形几何代数(CGA)方法。利用CGA中的平移、旋转算子和几何积,建立各个运动点的位置坐标表达式;根据CGA中内积几何性质,直接获得该机构的一元16次位置输入-输出方程及其所有解析解;将该高次方程求解出的所有解进行回代,获得机构所有运动点的位置坐标,并通过数字实例验证所提方法的有效性。结果表明:所提方法的几何直观性显著优于传统的复向量法、D-H矩阵法,不仅可以避免矩阵运算和消元运算,且求解无增根也无漏根。

     

  • 图 1  ${\boldsymbol{a}} \wedge {\boldsymbol{b}}$的几何表示

    Figure 1.  Geometric representation of ${\boldsymbol{a}} \wedge {\boldsymbol{b}}$

    图 2  七杆巴氏桁架机构

    Figure 2.  Seven-link Barranov truss mechanism

    图 3  平面π上点${{\boldsymbol{P}}_1}$的位置

    Figure 3.  Location of point ${{\boldsymbol{P}}_1}$ on plane π

    图 4  数字实例10组实数解的对应构型

    Figure 4.  Corresponding configurations of 10 sets of real number solutions of digital examples

    表  1  共形几何代数中几何元素的表达

    Table  1.   Expression of geometric elements in CGA

    实体 内积空间表达式 外积空间表达式
    ${\boldsymbol{P}} = {\boldsymbol{x}} + \dfrac{1}{2}{{\boldsymbol{x}}^2}{{\boldsymbol{e}}_\infty } + {{\boldsymbol{e}}_0}$
    ${\boldsymbol{S}} = {\boldsymbol{P}} - \dfrac{1}{2}{r^2}{{\boldsymbol{e}}_\infty }$ ${{\boldsymbol{S}}^ * } = {{\boldsymbol{P}}_1} \wedge {{\boldsymbol{P}}_2} \wedge {{\boldsymbol{P}}_3} \wedge {{\boldsymbol{P}}_4}$
    ${\boldsymbol{\pi }} = {\boldsymbol{n}} + d{{\boldsymbol{e}}_\infty }$ ${{\boldsymbol{\pi }}^ * } = {{\boldsymbol{P}}_1} \wedge {{\boldsymbol{P}}_2} \wedge {{\boldsymbol{P}}_3} \wedge {{\boldsymbol{e}}_\infty }$
    ${\boldsymbol{Z}} = {{\boldsymbol{S}}_1} \wedge {{\boldsymbol{S}}_2}$ ${{\boldsymbol{Z}}^ * } = {{\boldsymbol{P}}_1} \wedge {{\boldsymbol{P}}_2} \wedge {{\boldsymbol{P}}_3}$
    线 ${\boldsymbol{l}} = {{\boldsymbol{\pi }}_1} \wedge {{\boldsymbol{\pi }}_2}$ ${{\boldsymbol{l}}^ * } = {{\boldsymbol{P}}_1} \wedge {{\boldsymbol{P}}_2} \wedge {{\boldsymbol{e}}_\infty }$
    点对 ${\boldsymbol{P}}_P = {{\boldsymbol{S}}_1} \wedge {{\boldsymbol{S}}_2} \wedge {{\boldsymbol{S}}_3}$ ${\boldsymbol{P}}_P^* = {{\boldsymbol{P}}_1} \wedge {{\boldsymbol{P}}_2}$
    下载: 导出CSV

    表  2  位置正解10组实数解

    Table  2.   10 sets of real number solutions for forward position kinematics

    各点位置坐标 $ {{\boldsymbol{P}}}_{1} $ $ {{\boldsymbol{P}}}_{3} $ $ {{\boldsymbol{P}}}_{6} $ $ {{\boldsymbol{P}}}_{7} $ $ {{\boldsymbol{P}}}_{8} $ $ {{\boldsymbol{P}}}_{9} $
    $ {t}_{1} $=0.618 034 (−4.000 00,−3.000 00) (6.000 00,−3.000 00) (0,6.000 00) (4.000 00,7.000 00) (6.000 00,4.000 00) (10.000 0,6.000 00)
    $ {t}_{2} $=0.011 682 (3.393 40,−3.672 17) (2.370 56,6.275 38) (3.715 24,6.171 43) (6.470 92,3.104 47) (9.704 36,1.509 21) (12.165 2,5.243 41)
    $ {t}_{3} $=0.482 881 (4.081 52,−2.888 11) (1.016 82,6.630 69 (0.660 712,6.347 58) (4.780 91,6.502 36) (7.189 27,3.819 11) (10.862 2,6.370 44)
    $ {t}_{4} $=−0.334 540 (1.651 67,−4.719 32) (4.672 19,4.813 59) (5.312 48,4.423 89) (5.571 88,0.308 959) (2.006 49,−0.227 689) (2.118 45,−4.698 42)
    $ {t}_{5} $=−0.341 171 (−4.335 79,2.490 16) (−0.3867 15,−6.697 05) (5.329 19,4.384 37) (5.539 59,0.266 632) (4.605 84,3.749 18) (0.175 979,3.135 72)
    $ {t}_{6} $=−0.420 279 (1.062 47,−4.885 81) (5.225 49,4.206 46) (5.488 12,3.912 69) (5.129 44,−0.194 782) (4.663 44,−3.770 09) (8.992 13,−4.893 68)
    $ {t}_{7} $=−0.423 537 (−4.270 52,2.600 52) (−0.558 314,−6.684 93) (5.493 12,3.893 39) (5.111 72,−0.212 041) (4.748 82,−3.799 28) (9.108 06,−4.797 81)
    $ {t}_{8} $=−0.907 169 (−4.543 26,2.087 77) (0.220 628,−6.704 57) (5.289 43,1.523 63) (2.434 33,−1.451 00) (2.626 58,2.149 43) (−1.775 13,2.939 95)
    $ {t}_{9} $=−0.935 014 (−4.589 53,1.983 98) (0.372 944,−6.697 83) (5.243 46,1.425 21) (2.300 05,−1.462 06) (4.984 59,−3.868 97) (8.359 95,−0.935 213)
    $ {t}_{10} $=−1.025 82 (−3.653 12,−3.413 89) (6.288 55,−2.335 41) (5.083 89,1.131 94) (1.886 02,−1.470 68) (2.576 18,2.068 19) (−1.673 19,3.462 06)
    下载: 导出CSV
  • [1] GRASSMANN H. Die lineale ausdehnungslehre ein neuer zweig der mathematik paperback[M]. New York: Cambridge University Press, 2013.
    [2] CLIFFORD W K. On the space-theory of matter[M]//CAPEK M. The concepts of space and time. Berlin: Springer, 1976: 295-296.
    [3] HESTENES D. Grassmann’s legacy[M]//PETSCHE H J, LEWIS A, LIESEN J, et al. From past to future: GraBmann’s work in context. Berlin: Springer, 2011: 243-260.
    [4] HESTENES D. Old wine in new bottles: A new algebraic framework for computational geometry[M]//CORROCHAND E B, SOBCZYK G. Geometric Algebra with Applications in Science and Engineering. Berlin: Springer, 2001: 3-17.
    [5] LI H B. Invariant algebras and geometric reasoning[M]. Singarore: World Scientific, 2008.
    [6] CLIFFORD P. Applications of Grassmann’s extensive algebra[J]. American Journal of Mathematics, 1878, 1(4): 350. doi: 10.2307/2369379
    [7] LI H B. Ordering in mechanical geometry theorem proving[J]. Science in China Series A: Mathematics, 1997, 40(3): 225-233.
    [8] HILDENBRAND D, ZAMORA J, BAYRO-CORROCHANO E. Inverse kinematics computation in computer graphics and robotics using conformal geometric algebra[J]. Advances in Applied Clifford Algebras, 2008, 18(3): 699-713.
    [9] WANG C Q, WU H T, MIAO Q H. Inverse kinematics computation in robotics using conformal geometric algebra[C]//Proceedings of the International Technology and Innovation Conference. London: IET, 2009: 1-5.
    [10] 张立先. 基于几何代数的机构运动学及特性分析[D]. 秦皇岛: 燕山大学, 2008.

    ZHANG L X. Kinematics and characteristic analysis of mechanism based on geometric algebra[D]. Qinhuangdao: Yanshan University, 2008(in Chinese).
    [11] KIM J S, JEONG J H, PARK J H. Inverse kinematics and geometric singularity analysis of a 3-SPS/S redundant motion mechanism using conformal geometric algebra[J]. Mechanism and Machine Theory, 2015, 90: 23-36. doi: 10.1016/j.mechmachtheory.2015.02.009
    [12] 黄昔光, 黄旭. 基于共形几何代数的空间并联机构位置正解[J]. 北京航空航天大学学报, 2017, 43(12): 2377-2381.

    HUANG X G, HUANG X. Direct kinematics of a spatial parallel mechanism based on conformal geometric algebra[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2377-2381(in Chinese).
    [13] 马朝阳. 基于共形几何代数的并联机器人运动学研究[D]. 北京: 北方工业大学, 2019.

    MA C Y. Research on kinematics of parallel robot based on conformal geometric algebra[D]. Beijing: North China University of Technology, 2019(in Chinese).
    [14] HUANG X G, MA C Y, SU H J. A geometric algebra algorithm for the closed-form forward displacement analysis of 3-PPS parallel mechanisms[J]. Mechanism and Machine Theory, 2019, 137: 280-296. doi: 10.1016/j.mechmachtheory.2019.01.035
    [15] ROJAS N, THOMAS F. Distance-based position analysis of the three seven-link Assur kinematic chains[J]. Mechanism and Machine Theory, 2011, 46(2): 112-126. doi: 10.1016/j.mechmachtheory.2010.10.004
    [16] INNOCENTI C. Position analysis in analytical form of the 7-link Assur kinematic chain featuring one ternary link connected to ternary links only[J]. Mechanism and Machine Theory, 1997, 32(4): 501-509. doi: 10.1016/S0094-114X(96)00063-8
    [17] INNOCENTI C. Analytical-form position analysis of the 7-link Assur kinematic chain with four serially-connected ternary links[J]. Journal of Mechanical Design, 1994, 116(2): 622-628. doi: 10.1115/1.2919423
    [18] INNOCENTI C. Polynomial solution to the position analysis of the 7-link Assur kinematic chain with one quaternary link[J]. Mechanism and Machine Theory, 1995, 30(8): 1295-1303. doi: 10.1016/0094-114X(95)00045-Z
    [19] 王品, 廖启征, 魏世民. 基于吴方法的一种7杆巴氏桁架位移分析研究[J]. 机械科学与技术, 2006, 25(6): 748-752. doi: 10.3321/j.issn:1003-8728.2006.06.030

    WANG P, LIAO Q Z, WEI S M. Forward didplacement analysis of a seven-link Barravo truss based on Wu method[J]. Mechanical Science and Technology, 2006, 25(6): 748-752(in Chinese). doi: 10.3321/j.issn:1003-8728.2006.06.030
    [20] 王品, 廖启征, 庄育锋, 等. 9杆巴氏桁架的位移分析[J]. 机械工程学报, 2007, 43(7): 11-15. doi: 10.3321/j.issn:0577-6686.2007.07.003

    WANG P, LIAO Q Z, ZHUANG Y F, et al. Displacement analysis of nine-link Barranov truss[J]. Chinese Journal of Mechanical Engineering, 2007, 43(7): 11-15(in Chinese). doi: 10.3321/j.issn:0577-6686.2007.07.003
    [21] WANG P, LIAO Q Z, ZHUANG Y F, et al. A method for position analysis of a kind of nine-link Barranov truss[J]. Mechanism and Machine Theory, 2007, 42(10): 1280-1288. doi: 10.1016/j.mechmachtheory.2006.11.005
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  143
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-03
  • 录用日期:  2023-03-06
  • 网络出版日期:  2023-05-11
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答