留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

效用增强的差分私有轨迹合成方法

张学军 许陈 田丰 杜晓刚 黄海燕 徐彤

张学军,许陈,田丰,等. 效用增强的差分私有轨迹合成方法[J]. 北京航空航天大学学报,2024,50(12):3615-3631 doi: 10.13700/j.bh.1001-5965.2022.1013
引用本文: 张学军,许陈,田丰,等. 效用增强的差分私有轨迹合成方法[J]. 北京航空航天大学学报,2024,50(12):3615-3631 doi: 10.13700/j.bh.1001-5965.2022.1013
ZHANG X J,XU C,TIAN F,et al. Utility-enhanced synthesis method of differentially private trajectories[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3615-3631 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1013
Citation: ZHANG X J,XU C,TIAN F,et al. Utility-enhanced synthesis method of differentially private trajectories[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3615-3631 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1013

效用增强的差分私有轨迹合成方法

doi: 10.13700/j.bh.1001-5965.2022.1013
基金项目: 国家自然科学基金 (61762058,61901201,61861024);兰州交通大学“百名青年优秀人才培养计划”基金;甘肃省自然科学基金(21JR7RA282);甘肃省教育厅产业支撑计划(2022CYZC-38);中央高校基本科研业务费专项资金(GK202103090);陕西省自然科学基础研究计划(2022JM-329)
详细信息
    通讯作者:

    E-mail:xuejunzhang@mail.lzjtu.cn

  • 中图分类号: TP309.2

Utility-enhanced synthesis method of differentially private trajectories

Funds: National Natural Science Foundation of China (61762058,61901201,61861024); Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University; Natural Science Foundation of Gansu Province (21JR7RA282);The Education Department of Gansu Province: Industrial Support Plan Project (2022CYZC-38); The Fundamental Research Fund for the Central Universities (GK202103090); Natural Science Basic Research Program of Shaanxi (2022JM-329)
More Information
  • 摘要:

    轨迹数据对各种应用都具有重要的价值,然而共享与利用轨迹数据的同时保护用户隐私是一个长期的挑战。目前流行的轨迹共享隐私保护方法是基于差分隐私技术来生成与真实轨迹高度相似的完整合成轨迹,然而这些方法会造成合成轨迹可用性低且易遭受位置隐私推理攻击的问题。为此,提出一种效用增强的差分私有轨迹合成方法(UtiE-DPT)。该方法通过多次空间划分真实轨迹数据集,构建了细粒度的自适应密度网格来离散化真实轨迹,并设计了适合于自适应密度网格的差分私有马尔可夫移动模型、轨迹行程分布和轨迹长度分布计算模型来更精确地提取真实轨迹的效用保持关键统计特征,有效增强了合成轨迹的效用。为了防止轨迹隐私泄露,对提取的关键统计特征进行差分私有扰动。根据提取的特征并结合抗攻击约束策略生成抵御推理攻击的合成轨迹。在模拟与真实数据集上的大量实验结果表明,与现有的轨迹合成隐私保护方法DP-Star和AdaTrace相比,UtiE-DPT在保护轨迹隐私和抵御位置隐私推理攻击的同时增强了合成轨迹的可用性。在不考虑抵御推理攻击时,UtiE-DPT生成合成轨迹的查询误差比AdaTrace降低了21%~27%,比DP-Star降低了32%~53%;在抵御推理攻击后,虽然合成轨迹的弹性比比AdaTrace降低了约1%~2%,但查询误差比AdaTrace降低了16%~21%,在隐私保护与效用之间达成更好的均衡。

     

  • 图 1  UtiE-DPT模型架构

    Figure 1.  UtiE-DPT model architecture

    图 2  离散化真实轨迹对比及离散过程

    Figure 2.  Comparison of discretized real trajectory and discrete process

    图 3  相邻网格搜寻算法

    Figure 3.  Adjacent grid search algorithm

    图 4  轨迹起止分布对比

    Figure 4.  Comparison of trajectory start and end distribution

    图 5  最短路径长度搜寻算法

    Figure 5.  Shortest path length search algorithm

    图 6  两种数据集轨迹分布

    Figure 6.  Trajectory distribution of two data sets

    图 7  Brinkhoff-20k数据集网格划分实验结果

    Figure 7.  Grid division experiment result of Brinkhoff-20k dataset

    图 8  Brinkhoff-20k数据集鲁棒性实验结果

    Figure 8.  Robustness experiment result of Brinkhoff-20k dataset

    图 9  Brinkhoff-20k数据集合成轨迹分布

    Figure 9.  Distribution of synthetic trajectory of Brinkhoff-20k dataset

    图 10  Geolife数据集合成轨迹分布

    Figure 10.  Distribution of synthetic trajectory of Geolife dataset

    图 11  Brinkhoff-20k数据集抵御攻击的合成轨迹分布

    Figure 11.  Distribution of synthetic trajectories of Brinkhoff-20k dataset against inference attacks

    图 12  Geolife数据集抵御攻击的合成轨迹分布

    Figure 12.  Distribution of synthetic trajectories of Geolife dataset against inference attacks

    表  1  隐私分配效用对比

    Table  1.   Utility comparison of privacy allocation

    ${\varepsilon _1}$ ${\varepsilon _2}$ ${\varepsilon _3}$ ${\varepsilon _4}$ ${V_{{\text{QE}}}}$
    Brinkhoff-20k Geolife
    1/9 1/9 6/9 1/9 0.1282 0.2771
    1/9 2/9 5/9 1/9 0.1275 0.2624
    1/9 3/9 4/9 1/9 0.1201 0.2590
    1/9 4/9 3/9 1/9 0.1101 0.2498
    1/9 5/9 2/9 1/9 0.1653 0.3902
    1/9 6/9 1/9 1/9 0.1737 0.4226
    1/9 4/9 2/9 2/9 0.1511 0.3123
    1/9 1/9 1/9 3/9 0.1911 0.3218
    2/9 3/9 3/9 1/9 0.1449 0.3445
    2/9 3/9 2/9 2/9 0.1690 0.3612
    2/9 3/9 1/9 3/9 0.1837 0.3822
    3/9 2/9 3/9 1/9 0.1490 0.3028
    3/9 2/9 2/9 2/9 0.1780 0.3298
    3/9 2/9 1/9 3/9 0.1804 0.3593
    4/9 1/9 3/9 1/9 0.1544 0.2806
    4/9 1/9 2/9 2/9 0.1568 0.3424
    4/9 1/9 1/9 3/9 0.1935 0.3762
    下载: 导出CSV

    表  2  Brinkhoff-20k数据集合成轨迹效用对比

    Table  2.   Utility comparison of synthetic trajectory of Brinkhoff-20k dataset

    对比方法 $\varepsilon $ ${V_{{\text{QE}}}}$ $ {V_{{\text{FP}}}} $ $ {V_{{\text{TE}}}} $ ${V_{{\text{LE}}}}$ ${V_{{\text{DE}}}}$ ${V_{{\text{FPS}}}}$ $ {V_{{\text{KT}}}} $ t/s
    AdaTrace 0.5 0.1561 0.4805 0.0448 0.0616 0.0354 0.5960 0.7173 4.6
    1.0 0.1442 0.4100 0.0188 0.0516 0.0275 0.6810 0.7269 4.4
    2.0 0.1247 0.4089 0.0118 0.0481 0.0263 0.6825 0.7255 4.4
    DP-Star 0.5 0.1664 0.4291 0.0391 0.0712 0.0450 0.6510 0.7149 304.5
    1.0 0.1512 0.3712 0.0296 0.0618 0.0421 0.6957 0.7214 283.3
    2.0 0.1351 0.3704 0.0193 0.0589 0.0371 0.6983 0.7231 273.8
    UtiE-DPT 0.5 0.1185 0.4652 0.0459 0.0664 0.0341 0.6600 0.7200 23.8
    1.0 0.0971 0.4206 0.0227 0.0486 0.0217 0.6840 0.7354 18.9
    2.0 0.0946 0.4414 0.0133 0.0472 0.0203 0.6800 0.7382 18.8
    下载: 导出CSV

    表  3  Geolife数据集合成轨迹效用对比

    Table  3.   Utility comparison of synthetic trajectory of Geolife dataset

    对比方法 $\varepsilon $ ${V_{{\text{QE}}}}$ $ {V_{{\text{FP}}}} $ $ {V_{{\text{TE}}}} $ ${V_{{\text{LE}}}}$ ${V_{{\text{DE}}}}$ ${V_{{\text{FPS}}}}$ $ {V_{{\text{KT}}}} $ t/s
    AdaTrace 0.5 0.2992 0.8371 0.3000 0.0129 0.0928 0.5960 0.6204 2.1
    1.0 0.2151 0.8299 0.2367 0.0039 0.0834 0.6810 0.6682 1.3
    2.0 0.1809 0.7805 0.1811 0.0038 0.0867 0.6825 0.6793 1.1
    DP-Star 0.5 0.4273 0.8811 0.2086 0.0637 0.1689 0.4800 0.6289 173.4
    1.0 0.3831 0.8518 0.1618 0.0556 0.1636 0.5200 0.6376 170.2
    2.0 0.3648 0.8103 0.1371 0.0476 0.1453 0.5500 0.6377 165.2
    UtiE-DPT 0.5 0.2594 0.5229 0.1456 0.0408 0.0903 0.5900 0.6131 17.6
    1.0 0.1739 0.4915 0.0836 0.0220 0.0533 0.6300 0.6477 15.9
    2.0 0.1244 0.4869 0.0497 0.0144 0.0339 0.7000 0.6719 15.2
    下载: 导出CSV

    表  4  抵御推理攻击的合成轨迹效用对比

    Table  4.   Utility comparison of synthetic trajectories against inference attacks

    数据集 对比方法 $\varepsilon $ ${V_{{\text{QE}}}}$ $ {V_{{\text{FP}}}} $ $ {V_{{\text{TE}}}} $ ${V_{{\text{LE}}}}$ ${V_{{\text{DE}}}}$ ${V_{{\text{FPS}}}}$ $ {V_{{\text{KT}}}} $
    Brinkhoff-20k AdaTrace 0.5 0.1644 0.5447 0.0789 0.0518 0.0258 0.5300 0.6356
    1.0 0.1634 0.4849 0.0557 0.0441 0.0201 0.6200 0.6394
    2.0 0.1544 0.4788 0.0489 0.0406 0.0188 0.6400 0.6544
    UtiE-DPT 0.5 0.1394 0.4867 0.0703 0.0482 0.0211 0.6200 0.6377
    1.0 0.1391 0.4904 0.0565 0.0428 0.0174 0.5900 0.6467
    2.0 0.1272 0.4911 0.0487 0.0352 0.0148 0.6200 0.6531
    Geolife AdaTrace 0.5 0.3120 0.8520 0.3298 0.0100 0.0933 0.5300 0.5129
    1.0 0.2341 0.8253 0.2673 0.0096 0.0923 0.5700 0.5769
    2.0 0.2075 0.7949 0.1890 0.0059 0.0849 0.5900 0.5982
    UtiE-DPT 0.5 0.2735 0.5326 0.2831 0.0519 0.0936 0.5400 0.5204
    1.0 0.1900 0.5216 0.1982 0.0306 0.0859 0.5700 0.5793
    2.0 0.1441 0.5138 0.1192 0.0273 0.0799 0.5900 0.5971
    下载: 导出CSV
  • [1] 张学军, 桂小林, 伍忠东. 位置服务隐私保护研究综述[J]. 软件学报, 2015, 26(9): 2373-2395.

    ZHANG X J, GUI X L, WU Z D. Privacy preservation for location-based services: A survey[J]. Journal of Software, 2015, 26(9): 2373-2395 (in Chinese).
    [2] CHEN Z B, SHEN H T, ZHOU X F. Discovering popular routes from trajectories[C]// 2011 IEEE 27th International Conference on Data Engineering. Piscataway: IEEE Press, 2011: 900-911.
    [3] XU F L, ZHANG P Y, LI Y. Context-aware real-time population estimation for metropolis[C]// Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York: ACM, 2016: 1064-1075.
    [4] ZHOU C H, SU F Z, PEI T, et al. COVID-19: Challenges to GIS with big data[J]. Geography and Sustainability, 2020, 1(1): 77-87. doi: 10.1016/j.geosus.2020.03.005
    [5] DING D Z, ZHANG M, PAN X D, et al. Geographical feature extraction for entities in location-based social networks[C]// Proceedings of the 2018 World Wide Web Conference on World Wide Web. New York: ACM, 2018: 833-842.
    [6] LIU Q, YU J, HAN J M, et al. Differentially private and utility-aware publication of trajectory data[J]. Expert Systems with Applications, 2021, 180: 115120. doi: 10.1016/j.eswa.2021.115120
    [7] YUAN S L, PI D C, ZHAO X D, et al. Differential privacy trajectory data protection scheme based on R-tree[J]. Expert Systems with Applications, 2021, 182: 115215. doi: 10.1016/j.eswa.2021.115215
    [8] WANG Y F, LI M Z, LUO S S, et al. LRM: A location recombination mechanism for achieving trajectory: Anonymity privacy protection[J]. IEEE Access, 2019, 7: 182886-182905. doi: 10.1109/ACCESS.2019.2960008
    [9] LIU Z P, ZHAO X, DONG Y W, et al. Trajectory rotation privacy protection algorithm based on k anonymity[J]. Journal of Computer and Communications, 2018, 6(2): 36-47. doi: 10.4236/jcc.2018.62004
    [10] 张少波, 王国军, 刘琴, 等. 基于多匿名器的轨迹隐私保护方法[J]. 计算机研究与发展, 2019, 56(3): 576-584. doi: 10.7544/issn1000-1239.2019.20180033

    ZHANG S B, WANG G J, LIU Q, et al. Trajectory privacy protection method based on multi-anonymizer[J]. Journal of Computer Research and Development, 2019, 56(3): 576-584 (in Chinese). doi: 10.7544/issn1000-1239.2019.20180033
    [11] 陈传明, 林文诗, 俞庆英, 等. 一种基于单点收益的轨迹隐私保护方法[J]. 电子学报, 2020, 48(1): 143-152.

    CHEN C M, LIN W S, YU Q Y, et al. A trajectory privacy-preserving method based on single point gain[J]. Acta Electronica Sinica, 2020, 48(1): 143-152 (in Chinese).
    [12] LIN C Y. Suppression techniques for privacy-preserving trajectory data publishing[J]. Knowledge-Based Systems, 2020, 206: 106354. doi: 10.1016/j.knosys.2020.106354
    [13] 叶阿勇, 孟玲玉, 赵子文, 等. 基于预测和滑动窗口的轨迹差分隐私保护机制[J]. 通信学报, 2020, 41(4): 123-133. doi: 10.11959/j.issn.1000-436x.2020049

    YE A Y, MENG L Y, ZHAO Z W, et al. Trajectory differential privacy protection mechanism based on prediction and sliding window[J]. Journal on Communications, 2020, 41(4): 123-133 (in Chinese). doi: 10.11959/j.issn.1000-436x.2020049
    [14] 袁水莲, 皮德常, 胥萌. 基于差分隐私的轨迹隐私保护方法[J]. 电子学报, 2021, 49(7): 1266-1273. doi: 10.12263/DZXB.20200827

    YUAN S L, PI D C, XU M. Trajectory privacy protection method based on differential privacy[J]. Acta Electronica Sinica, 2021, 49(7): 1266-1273 (in Chinese). doi: 10.12263/DZXB.20200827
    [15] ZHAO X D, PI D C, CHEN J F. Novel trajectory privacy-preserving method based on prefix tree using differential privacy[J]. Knowledge-Based Systems, 2020, 198: 105940. doi: 10.1016/j.knosys.2020.105940
    [16] GURSOY M E, LIU L, TRUEX S, et al. Utility-aware synthesis of differentially private and attack-resilient location traces[C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 196-211.
    [17] KONSTANTINO C, CATUSCIA P, MARCO S. A predictive differentially-private mechanism for mobility traces[C]//Proceedings of International Symposium on Privacy Enhancing Technologies. Berlin: Springer, 2014: 21-41.
    [18] 陈思, 付安民, 苏铓, 等. 基于差分隐私的轨迹隐私保护方案[J]. 通信学报, 2021, 42(9): 54-64. doi: 10.11959/j.issn.1000-436x.2021168

    CHEN S, FU A M, SU M, et al. Trajectory privacy protection scheme based on differential privacy[J]. Journal on Communications, 2021, 42(9): 54-64 (in Chinese). doi: 10.11959/j.issn.1000-436x.2021168
    [19] 李凤华, 张翠, 牛犇, 等. 高效的轨迹隐私保护方案[J]. 通信学报, 2015, 36(12): 114-123. doi: 10.11959/j.issn.1000-436x.2015320

    LI F H, ZHANG C, NIU B, et al. Efficient scheme for user’s trajectory privacy[J]. Journal on Communications, 2015, 36(12): 114-123 (in Chinese). doi: 10.11959/j.issn.1000-436x.2015320
    [20] LIU X Y, CHEN J M, XIA X F, et al. Dummy-based trajectory privacy protection against exposure location attacks[C]//International Conference on Web Information Systems and Applications. Berlin: Springer, 2019: 368-381.
    [21] BINDSCHAEDLER V, SHOKRI R. Synthesizing plausible privacy-preserving location traces[C]// 2016 IEEE Symposium on Security and Privacy. Piscataway: IEEE Press, 2016: 546-563.
    [22] HE X, CORMODE G, MACHANAVAJJHALA A, et al. DPT[J]. Proceedings of the VLDB Endowment, 2015, 8(11): 1154-1165. doi: 10.14778/2809974.2809978
    [23] GURSOY M E, LIU L, TRUEX S, et al. Differentially private and utility preserving publication of trajectory data[J]. IEEE Transactions on Mobile Computing, 2019, 18(10): 2315-2329. doi: 10.1109/TMC.2018.2874008
    [24] CUNNINGHAM T, CORMODE G, FERHATOSMANOGLU H. Privacy-preserving synthetic location data in the real world[C]// 17th International Symposium on Spatial and Temporal Databases. New York: ACM, 2021: 23-33.
    [25] YANG J Y, CHENG X, SU S, et al. Collecting individual trajectories under local differential privacy[C]// 2022 23rd IEEE International Conference on Mobile Data Management. Piscataway: IEEE Press, 2022: 99-108.
    [26] DU Y T, HU Y J, ZHANG Z K, et al. LDPTrace: Locally differentially private trajectory synthesis[J]. Proceedings of the VLDB Endowment, 2023, 16(8): 1897-1909. doi: 10.14778/3594512.3594520
    [27] SHAO M L, LI J X, YAN Q B, et al. Structured sparsity model based trajectory tracking using private location data release[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(6): 2983-2995.
    [28] DWORK C, KENTHAPADI K, MCSHERRY F, et al. Our data, ourselves: Privacy via distributed noise generation[M]// Annual International Conference on the Theory and Applications of Cryptographic Trchniques. Berlin: Springer, 2006: 486-503.
    [29] MCSHERRY F D. Privacy integrated queries: An extensible platform for privacy-preserving data analysis[C]// Proceedings of the 2009 ACM SIGMOD International Conference on Management of data. New York: ACM, 2009: 19-30.
    [30] BRINKHOFF T. A framework for generating network-based moving objects[J]. GeoInformatica, 2002, 6(2): 153-180. doi: 10.1023/A:1015231126594
    [31] ZHENG Y, ZHANG L Z, XIE X, et al. Mining interesting locations and travel sequences from GPS trajectories[C]// Proceedings of the 18th International Conference on World Wide Web. New York: ACM, 2009: 791-800.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  101
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-27
  • 录用日期:  2023-02-03
  • 网络出版日期:  2023-03-15
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答