留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信号分解与分类建模的HRG稳定期预测

李新三 李灿 沈强 汪立新 王海洋

李新三,李灿,沈强,等. 基于信号分解与分类建模的HRG稳定期预测[J]. 北京航空航天大学学报,2024,50(12):3729-3738 doi: 10.13700/j.bh.1001-5965.2022.1016
引用本文: 李新三,李灿,沈强,等. 基于信号分解与分类建模的HRG稳定期预测[J]. 北京航空航天大学学报,2024,50(12):3729-3738 doi: 10.13700/j.bh.1001-5965.2022.1016
LI X S,LI C,SHEN Q,et al. HRG stability period prediction based on signal decomposition and classification modeling[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3729-3738 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1016
Citation: LI X S,LI C,SHEN Q,et al. HRG stability period prediction based on signal decomposition and classification modeling[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3729-3738 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1016

基于信号分解与分类建模的HRG稳定期预测

doi: 10.13700/j.bh.1001-5965.2022.1016
基金项目: 陕西省自然科学基础研究计划(2020JQ-491);陕西省高效科协青年人才托举计划(20200109)
详细信息
    通讯作者:

    E-mail:xinsan_2006@163.com

  • 中图分类号: TN96;TH824.3

HRG stability period prediction based on signal decomposition and classification modeling

Funds: Natural Science Basic Research Program of Shaanxi Province (2020JQ-491); Young Elite Scientists Sponsorship Program by University Association for Science and Technology of Shaanxi (20200109)
More Information
  • 摘要:

    为准确预测半球谐振陀螺(HRG)输出稳定期,提出基于信号分解与分类建模的稳定期预测方法。针对HRG高可靠、长期稳定特点引起的样本变化规律不明显问题,使用具有频率显微镜能力的互补集合经验模态分解(CEEMD)算法对输出进行分解,得到不同频率尺度的信号分量;采用增广Dickey-Fuller(ADF)检验方法对分量信号进行平稳性检验,对于平稳分量建立自回归滑动平均(ARMA)预测模型,对于非平稳分量建立熵-径向基(RBF)神经网络模型。在时间对齐后,分量信号重构得到陀螺输出预测模型。设计陀螺输出稳定标准,给定基于输出预测的稳定期预测流程。经实验验证,组合模型预测平均相对误差仅为1.29%,比自回归积分滑动平均模型(ARIMA)误差减小了1个数量级,比熵-RBF神经网络模型误差减小了约1倍,验证了信号分解与分类建模方法的有效性与高精度。基于陀螺预测输出对陀螺稳定期进行预测,得到了实验陀螺输出稳定期约为3.95年的结论,与实际应用中相一致,说明所提方法的可行性。

     

  • 图 1  单隐层RBF神经网络结构

    Figure 1.  Structure of single hidden layer RBF neural network

    图 2  RBF网络拟合原理

    Figure 2.  Fitting principle of RBF network

    图 3  陀螺稳定期预测流程

    Figure 3.  Prediction process of gyro stability period

    图 4  陀螺安装方式及数据采集面板

    Figure 4.  Installation mode of gyro and data collection panel

    图 5  HRG输出

    Figure 5.  Output of HRG

    图 6  CEEMD分解结果

    Figure 6.  Decomposition results of CEEMD

    图 7  RBF神经网络训练过程

    Figure 7.  Training process of RBF neural network

    图 8  测试样本的预测结果和预测误差

    Figure 8.  Prediction results and errors of test samples

    图 9  HRG预测结果

    Figure 9.  Prediction results of HRG

    表  1  微机电系统陀螺仪性能指标参数

    Table  1.   Property index parameters of micro-electro-mechanical system gyro

    范围 概率/%
    $ [\bar x - 1\sigma ,\bar x + 1\sigma ] $ 68.26
    $ [\bar x - 2\sigma ,\bar x + 2\sigma ] $ 95.45
    $ [\bar x - 3\sigma ,\bar x + 3\sigma ] $ 99.73
    下载: 导出CSV

    表  2  分量信号平稳性检验结果

    Table  2.   Stationarity test results of component signal

    信号 统计量 非平稳置信度
    原始信号 0.0522 4 0.651 46
    IMF1 −47.590 1 0.001 00
    IMF2 −14.178 5 0.001 00
    IMF3 −6.597 8 0.001 00
    IMF4 −3.579 6 0.001 00
    IMF5 −3.061 8 0.002 91
    IMF6 0.066 9 0.654 06
    余项 12.276 1 0.999 01
    下载: 导出CSV

    表  3  平稳分量信号建模结果

    Table  3.   Modeling results of stationary component signal

    分量 模型 $ {\alpha }_{1} $ $ {\alpha }_{2} $ $ {\alpha }_{3} $ $ {\beta }_{1} $ $ {\beta }_{2} $ $ {\beta }_{3} $
    IMF1 ARMA(2,3) 0 1.7780 1.0060 1.0607 0.1690 0.6240
    IMF2 ARMA(2,3) 0 0.7473 0.6739 0.4207 0.6800 0.4190
    IMF3 ARMA(3,3) 2.1665 1.8724 0.5725 1.0526 0.6302 0.3718
    IMF4 ARMA(3,3) 2.7884 2.6795 0.8824 1.3629 0.8762 0.2787
    IMF5 ARMA(3,3) 2.9524 2.9194 0.9667 1.8700 1.6080 0.6185
    下载: 导出CSV

    表  4  模型预测误差

    Table  4.   Prediction error of models

    模型 均方根误差/V 平均相对误差/%
    ARIMA 2.32×10−4 12.56
    熵-RBF神经网络 7.91×10−5 2.36
    组合模型 2.68×10−5 1.29
    下载: 导出CSV
  • [1] 孙一为, 解伟男, 薛智文, 等. 半球谐振陀螺星载惯性测量单元设计与实现[J]. 中国惯性技术学报, 2022, 30(2): 148-153.

    SUN Y W, XIE W N, XUE Z W, et al. Design and implementation of inertial measurement unit for satellites based on hemispherical resonant gyroscopes[J]. Journal of Chinese Inertial Technology, 2022, 30(2): 148-153(in Chinese).
    [2] 吴宗收, 汪立新, 李新三, 等. 一种改进PSO-ARMA半球谐振陀螺温度误差建模方法[J]. 北京航空航天大学学报, 2022, 48(6): 1050-1056.

    WU Z S, WANG L X, LI X S, et al. An improved PSO-ARMA method for temperature error modeling of hemispherical resonator gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1050-1056(in Chinese).
    [3] CANDLER R N, HOPCROFT M A, KIM B, et al. Long-term and accelerated life testing of a novel single-wafer vacuum encapsulation for MEMS resonators[J]. Journal of Microelectromechanical Systems, 2006, 15(6): 1446-1456. doi: 10.1109/JMEMS.2006.883586
    [4] MA K, SONG N F, JIN J, et al. Radiation-induced degradation analysis and reliability modeling of COTS ADCs for space-borne miniature fiber-optic gyroscopes[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9505908.
    [5] 刘吉, 于丽霞, 武锦辉. MEMS陀螺仪加速参数退化的可靠度评估[J]. 探测与控制学报, 2019, 41(6): 33-37.

    LIU J, YU L X, WU J H. Reliability assessment of MEMS gyro acceleration parameter degradation[J]. Journal of Detection & Control, 2019, 41(6): 33-37(in Chinese).
    [6] 袁莉芬, 朋张胜, 何怡刚. 基于Copula函数的光纤陀螺贮存可靠性评估[J]. 电子测量与仪器学报, 2020, 34(8): 58-65.

    YUAN L F, PENG Z S, HE Y G. Evaluating storage reliability of FOG based on Copula function[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(8): 58-65(in Chinese).
    [7] 秦伟亮, 魏法杰. 基于倒向随机微分方程的光纤陀螺稳定性评估方法[J]. 中国惯性技术学报, 2019, 27(2): 260-265.

    QIN W L, WEI F J. Evaluation method of FOG stability based on backward stochastic differential equation[J]. Journal of Chinese Inertial Technology, 2019, 27(2): 260-265(in Chinese).
    [8] YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156. doi: 10.1142/S1793536910000422
    [9] 梁言. 基于时间序列平稳性分析的试飞数据稳态段提取[J]. 现代机械, 2020(2): 52-56.

    LIANG Y. Steady state segment extracting of flight test data based on time series stability analysis[J]. Modern Machinery, 2020(2): 52-56(in Chinese).
    [10] AKBILGIC O, BOZDOGAN H, BALABAN M E. A novel hybrid RBF neural networks model as a forecaster[J]. Statistics and Computing, 2014, 24(3): 365-375. doi: 10.1007/s11222-013-9375-7
    [11] 殷泽凯, 唐家银, 何平. 恒加双应力型相对熵信息融合可靠性评估模型[J]. 机械强度, 2021, 43(4): 841-848.

    YIN Z K, TANG J Y, HE P. Reliability assessment model based on relative entropy information fusion with double constant accelerating stresses[J]. Journal of Mechanical Strength, 2021, 43(4): 841-848(in Chinese).
    [12] HAJI S H, ABDULAZEEZ A M. Comparison of optimization techniques based on gradient descent algorithm: A review[J]. PalArch's Journal of Archaeology of Egypt/Egyptology, 2021, 18(4): 2715-2743.
    [13] 魏传华, 王韶郡, 苏宇楠. 空间变系数地理加权自回归模型的局部GMM估计[J]. 统计与信息论坛, 2022, 37(11): 3-13.

    WEI C H, WANG S J, SU Y N. Local GMM estimation in spatial varying coefficient geographically weighted autoregressive model[J]. Journal of Statistics and Information, 2022, 37(11): 3-13 (in Chinese).
    [14] 陈小玲, 张兴发, 李元, 等. 一类带有线性GARCH类误差的滑动平均模型[J]. 数学的实践与认识, 2021, 51(18): 118-131.

    CHEN X L, ZHANG X F, LI Y, et al. A class of moving average model with linear GARCH type errors[J]. Journal of Mathematics in Practice and Theory, 2021, 51(18): 118-131(in Chinese).
    [15] SINGH R K, RANI M, BHAGAVATHULA A S, et al. Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced autoregressive integrated moving average (ARIMA) model[J]. JMIR Public Health and Surveillance, 2020, 6(2): e19115. doi: 10.2196/19115
    [16] 郑欣彤, 边婷婷, 张德强, 等. ARIMA和LSTM方法长时间温度观测数据缺失值插补的比较[J]. 计算机应用, 2022, 42(S1): 130-135.

    ZHENG X T, BIAN T T, ZHANG D Q, et al. Comparison of ARIMA and LSTM methods for interpolation of missing values of long-time temperature observations[J]. Journal of Computer Applications, 2022, 42(S1): 130-135(in Chinese).
    [17] SCHAFFER A L, DOBBINS T A, PEARSON S A. Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: A guide for evaluating large-scale health interventions[J]. BMC Medical Research Methodology, 2021, 21(1): 58. doi: 10.1186/s12874-021-01235-8
    [18] QIU B M, WANG J W, LI P H. Full digital control of hemispherical resonator gyro under force-to-rebalance mode[J]. IEEE Sensors Journal, 2015, 15(1): 71-75. doi: 10.1109/JSEN.2014.2339229
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  89
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-27
  • 录用日期:  2023-02-11
  • 网络出版日期:  2023-03-22
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答