留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速电磁阀相移PWM电压驱动策略

陈晓明 朱玉川 李林飞 王玉文

陈晓明,朱玉川,李林飞,等. 高速电磁阀相移PWM电压驱动策略[J]. 北京航空航天大学学报,2025,51(1):167-174 doi: 10.13700/j.bh.1001-5965.2022.1018
引用本文: 陈晓明,朱玉川,李林飞,等. 高速电磁阀相移PWM电压驱动策略[J]. 北京航空航天大学学报,2025,51(1):167-174 doi: 10.13700/j.bh.1001-5965.2022.1018
CHEN X M,ZHU Y C,LI L F,et al. Phase-shifted PWM voltage drive strategy of high-speed solenoid valve[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):167-174 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1018
Citation: CHEN X M,ZHU Y C,LI L F,et al. Phase-shifted PWM voltage drive strategy of high-speed solenoid valve[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):167-174 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1018

高速电磁阀相移PWM电压驱动策略

doi: 10.13700/j.bh.1001-5965.2022.1018
基金项目: 

国家自然科学基金(51975275); 江苏省重点研发计划(BE2021034) 

详细信息
    通讯作者:

    E-mail:meeyczhu@nuaa.edu.cn

  • 中图分类号: TH137

Phase-shifted PWM voltage drive strategy of high-speed solenoid valve

Funds: 

National Natural Science Foundation of China (51975275); Primary Research and Development Plan of Jiangsu Province (BE2021034) 

More Information
  • 摘要:

    高速电磁阀作为数字流量技术的核心控制元件,其动态响应及有效可控占空比区间严重影响系统流量控制精度。为进一步扩展有效可控占空比区间,提出一种包含基准脉冲宽度调制(PWM)、预激励PWM、激励PWM、高频PWM、预卸荷PWM、卸荷PWM在内的相移PWM电压驱动策略,给出相移PWM电压驱动策略的工作原理,并建立高速电磁阀动态特性理论模型,开展预激励PWM、预卸荷PWM可控占空比仿真分析与实验验证研究。结果表明:所提策略与复合PWM电压驱动策略相比,阀芯开启、关闭压力响应时间分别缩小了87%、37.9%,工作频率为100 Hz,阀芯正常启闭可控占空比为0.285~0.77,自扩展至0.085~0.81。

     

  • 图 1  高速电磁阀结构示意图

    Figure 1.  High-speed solenoid valve structure

    图 2  相移PWM工作原理

    Figure 2.  Working principle of phase-shifted PWM

    图 3  预激励可控占空比τp仿真分析结果

    Figure 3.  Simulation analysis results of pre-excitation controllable duty cycle τp

    图 4  预卸荷可控占空比τc仿真分析结果

    Figure 4.  Simulation analysis results of pre-unloading controllable duty cycle τc

    图 5  高速电磁阀动态特性测试平台

    Figure 5.  Test platform for dynamic characteristics of high-speed solenoid valve

    图 6  高速电磁阀线圈电流、阀后压力响应

    Figure 6.  Coil current and downstream pressure response of high-speed solenoid valve

    图 7  不同电压驱动策略下线圈电流、阀后压力响应对比

    Figure 7.  Coil current and downstream pressure response of high-speed solenoid valve

    图 8  可控占空比对比结果

    Figure 8.  Comparison results of controllable duty cycle

    图 9  线圈温升对比结果

    Figure 9.  Comparison results of coil temperature rise

  • [1] DONKOV V H, ANDERSEN T, LINJAMA M, et al. Digital hydraulic technology for linear actuation: A state of the art review[J]. International Journal of Fluid Power, 2020, 21(2): 263-304.
    [2] SHANG Y X, LI R J, WU S, et al. A research of high-precision pressure regulation algorithm based on ON/OFF valves for aircraft braking system[J]. IEEE Transactions on Industrial Electronics, 2022, 69(8): 7797-7806. doi: 10.1109/TIE.2021.3108705
    [3] LEE I Y. Switching response improvement of a high speed on/off solenoid valve by using a 3 power source type valve driving circuit[C]// Proceedings of the IEEE International Conference on Industrial Technology. Piscataway: IEEE Press, 2006: 1823-1828.
    [4] MESSNER F, SCHEIDL R. Development of a dual supply H-bridge amplifier for high speed actuation of digital hydraulic switching valves[J]. International Journal of Fluid Power, 2019, 20(1): 125-150.
    [5] ZHAO J H, WANG M L, WANG Z J, et al. Different boost voltage effects on the dynamic response and energy losses of high-speed solenoid valves[J]. Applied Thermal Engineering, 2017, 123: 1494-1503. doi: 10.1016/j.applthermaleng.2017.05.117
    [6] ZHAO J H, SHI Y, GREKHOV L, et al. Effects of structure parameters on the static electromagnetic characteristics of high speed solenoid valves[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 55(1): 45-60. doi: 10.3233/JAE-160129
    [7] ZHAO J H, YUE P F, GREKHOV L, et al. Hold current effects on the power losses of high-speed solenoid valve for common-rail injector[J]. Applied Thermal Engineering, 2018, 128: 1579-1587. doi: 10.1016/j.applthermaleng.2017.09.123
    [8] 孙晓, 栾盈盈, 孙柯, 等. 高速双线圈开关电磁阀控制策略研究[J]. 液压与气动, 2020(2): 175-182. doi: 10.11832/j.issn.1000-4858.2020.02.027

    SUN X, LUAN Y Y, SUN K, et al. Control strategy of high-speed on/off solenoid valve with double windings[J]. Chinese Hydraulics & Pneumatics, 2020(2): 175-182(in Chinese). doi: 10.11832/j.issn.1000-4858.2020.02.027
    [9] 钟麒, 张斌, 洪昊岑, 等. 基于电流反馈的高速开关阀3电压激励控制策略[J]. 浙江大学学报(工学版), 2018, 52(1): 8-15. doi: 10.3785/j.issn.1008-973X.2018.01.002

    ZHONG Q, ZHANG B, HONG H C, et al. Three power sources excitation control strategy of high speed on/off valve based on current feedback[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(1): 8-15(in Chinese). doi: 10.3785/j.issn.1008-973X.2018.01.002
    [10] ZHONG Q, ZHANG B, YANG H Y, et al. Performance analysis of a high-speed on/off valve based on an intelligent pulse-width modulation control[J]. Advances in Mechanical Engineering, 2017, 9(11): 168781401773324.
    [11] GAO Q, ZHU Y C, LUO Z, et al. Investigation on adaptive pulse width modulation control for high speed on/off valve[J]. Journal of Mechanical Science and Technology, 2020, 34(4): 1711-1722. doi: 10.1007/s12206-020-0333-y
    [12] YUE D L, LI L F, WEI L J, et al. Effects of pulse voltage duration on open-close dynamic characteristics of solenoid screw-in cartridge valves[J]. Processes, 2021, 9(10): 1722. doi: 10.3390/pr9101722
    [13] LIU Z G, LI L F, YUE D L, et al. Dynamic performance improvement of solenoid screw-in cartridge valve using a new hybrid voltage control[J]. Machines, 2022, 10(2): 106. doi: 10.3390/machines10020106
    [14] ZHONG Q, WANG X L, XIE G, et al. Analysis of dynamic characteristics and power losses of high speed on/off valve with pre-existing control algorithm[J]. Energies, 2021, 14(16): 4901. doi: 10.3390/en14164901
    [15] KIM S, MURRENHOFF H. Measurement of effective bulk modulus for hydraulic oil at low pressure[J]. Journal of Fluids Engineering, 2012, 134(2): 021201. doi: 10.1115/1.4005672
  • 加载中
图(9)
计量
  • 文章访问数:  501
  • HTML全文浏览量:  213
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 录用日期:  2023-01-17
  • 网络出版日期:  2023-02-15
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答