Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向城市道路安全的ARAIM保护级优化方法

邓思瑜 孙蕊 张立东 胡浩亮

邓炜, 张军, 吴限, 等 . 一种适用于航路改变情况的冲突概率预测算法[J]. 北京航空航天大学学报, 2005, 31(12): 1327-1331.
引用本文: 邓思瑜,孙蕊,张立东,等. 面向城市道路安全的ARAIM保护级优化方法[J]. 北京航空航天大学学报,2025,51(1):222-234 doi: 10.13700/j.bh.1001-5965.2022.1020
Deng Wei, Zhang Jun, Wu Xian, et al. Algorithm of conflict probability prediction for the case of trajectory change[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(12): 1327-1331. (in Chinese)
Citation: DENG S Y,SUN R,ZHANG L D,et al. Protection level optimization method of ARAIM algorithm for urban road safety[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):222-234 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1020

面向城市道路安全的ARAIM保护级优化方法

doi: 10.13700/j.bh.1001-5965.2022.1020
基金项目: 国家自然科学基金(41974033, 42174025, 42222401);工信部民用飞机专项科研项目(MJ-2020-S-03);欧盟地平线2020创新研究项目(875154 GreAT);江苏省“六大人才高峰”项目(KTHY-014);江苏省自然科学基金(BK20211569);中央高校基本科研业务费专项资金(xcxjh20220722)
详细信息
    通讯作者:

    E-mail:rui.sun@nuaa.edu.cn

  • 中图分类号: V221+.3;TB553

Protection level optimization method of ARAIM algorithm for urban road safety

Funds: National Natural Science Foundation of China (41974033, 42174025, 42222401); Civil Aircraft Special Research Project of Ministry of Industry and Information Technology (MJ-2020-S-03); European Union’s Horizon 2020 Research and Innovation Programme (875154 GreAT); Jiangsu Provincial Six Talent Peaks Project (KTHY-014); Natural Science Foundation of Jiangsu Province (BK20211569); Fundamental Research Funds for the Central Universities (xcxjh20220722)
More Information
  • 摘要:

    目前,以安全为导向的城市智能交通应用正不断扩展,此类应用不仅对全球卫星导航系统(GNSS)的精度有着一定的要求,同时对GNSS 的完好性也提出了新的挑战。先进接收机自主完好性监测(ARAIM)技术作为一种低成本、自主性强的完好性监测算法,目前已经在空旷的航空领域受到广泛的关注,但是在城市环境的应用尚属空白,且面向航空应用空旷环境下的传统ARAIM算法对完好性风险和连续性风险分配较为简单、导致计算的保护级数值过于保守。针对上述问题,本文提出一种基于教与学(TLBO)算法的保护级优化方法,可以实现城市道路安全的完好性需求下完好性风险和连续性风险的合理分配,从而提高多星座ARAIM的可用性。车载实测数据表明,在全球定位系统(GPS)+伽利略卫星导航系统(GAL)双星座场景下,水平保护级(HPL)和垂直保护级(VPL)的平均优化率为50.58%和44.14%,10 m级告警门限(AL)对应的ARAIM可用性提高了51.29%;GPS+GAL+BDS多星座场景下,HPL和VPL的平均优化率为59.59%和56.33%,10 m级AL对应的ARAIM可用性提高了99.29%。

     

  • 图 1  基于TLBO算法的保护级优化方法流程图

    Figure 1.  Flow chart of TLBO algorithm-based protection level optimization method

    图 2  实验路径图

    Figure 2.  Experimental trajectory

    图 3  实验设备图

    Figure 3.  Experimental equipment

    图 4  不同组合的可见卫星数目

    Figure 4.  Number of visible satellites for different constellation systems

    图 5  GPS+GAL星座组合下水平和垂直方向上的定位误差及优化前后的保护级数值

    Figure 5.  Positioning error and value of protection level before and after optimization in horizontal and vertical direction for GPS+GAL constellation systems

    图 6  GPS+GAL+BDS星座组合下垂直方向上的定位误差及优化前后的保护级数值

    Figure 6.  Positioning error and value of protection level before and after optimization in horizontal and vertical direction for GPS+GAL+BDS constellation systems

    图 7  实验道路转角部分

    Figure 7.  Corner section of experimental road

    图 8  有遮挡场景下的不同星座组合水平方向上的定位误差及优化前后的保护级数值

    Figure 8.  Positioning error and the value of protection level before and after optimization in horizontal direction for different constellation systems with obscured scenes

    图 9  GPS+GAL双星座场景下水平保护级优化前后结果图

    Figure 9.  Horizontal protection level results before and after optimization in GPS+GAL dual-constellation scenario

    图 10  GPS+GAL+BDS多星座场景下水平保护级优化前后结果图

    Figure 10.  Horizontal protection level results before and after optimization in GPS+GAL+BDS multi-constellation scenario

    表  1  ISM参数定义

    Table  1.   Definitions of ISM parameter

    参数定义
    Psat,i一定时间内卫星i发生故障的先验概率
    Pconst,j一定时间内星座j发生故障的先验概率
    σURA,i用户测距精度,用于评估完好性的高斯分布标准差
    σURE,i用户测距误差,用于评估精度和连续性的高斯分布标准差
    bnom,i用于评估完好性的正常状态下最大伪距偏差
    下载: 导出CSV

    表  2  公路用户的导航性能需求

    Table  2.   Navigation requirements of highway user

    需求 完好性/m 连续性 精度/m 可用性/%
    导航和路线引导 2~20 待定 1~20 95
    自动车辆监控 0.2~30 0.1~20 95
    自动车辆识别 3 1 99.7
    公共安全 0.2~30 0.1~30 95~99.7
    资源管理 0.2~1 0.005~30 99.7
    避撞 0.2 0.1 99.9
    智能交通 0.2 0.1 99.9
    下载: 导出CSV

    表  3  货运用户的导航性能需求

    Table  3.   Navigation requirements of rail user

    需求 完好性/m 连续性 精度/m 可用性/%
    停车场 50 待定 2~20 95
    地理围栏 10 10~20 99
    危险品运输 10 10~20 99
    拖车跟踪 50 20 95
    沿海运输违规检查 10 10~20 99
    车队管理 50 20 95
    驾考 10 5~20 99
    下载: 导出CSV

    表  4  ISM参数设置[28-30]

    Table  4.   ISM parameter setting[28-30]

    星座PsatPconstσUREσURAbnom
    GPS1×1051×1081.01.50.75
    GAL3×1052×1041.01.50.75
    BDS1×1056×1051.01.50.75
    下载: 导出CSV

    表  5  双星座和多星座组合下的平均保护级优化率

    Table  5.   Average protection level optimization ratios for dual and multi-constellation systems

    星座 ˉHPL ˉHPL优化
    率/%
    ˉVPL ˉVPL优化
    率/%
    优化前 优化后 优化前 优化后
    GPS+GAL 21.49 10.62 50.58 11.78 6.58 44.14
    GPS+GAL+BDS 17.67 7.14 59.59 8.06 3.52 56.33
    下载: 导出CSV

    表  6  不同应用需求门限下的ARAIM可用性提高率

    Table  6.   ARAIM availability improvement rates under different application requirements thresholds

    星座 需求门限/m 优化前
    可用性/%
    优化后
    可用性/%
    提高率/%
    GPS+GAL 10 0.00 51.29 51.29
    20 47.86 99.14 51.29
    30 96.43 99.71 3.29
    40 99.57 100.00 0.43
    50 99.71 100.00 0.29
    GPS+GAL+BDS 10 0.00 99.29 99.29
    20 88.71 100.00 11.29
    30 98.71 100.00 0.00
    40 100.00 100.00 0.00
    50 100.00 100.00 0.00
    下载: 导出CSV

    表  7  有遮挡场景下双星座和多星座组合的平均保护级优化率

    Table  7.   Average protection level optimization ratios for dual and multi-constellation systems with obscured scenes

    星座 ˉHPL 优化率/%
    优化前 优化后
    GPS+GAL 21.48 9.76 54.56
    GPS+GAL+BDS 18.45 7.16 61.19
    下载: 导出CSV
  • [1] ILCEV D S. Development and characteristics of African Satellite Augmentation System (ASAS) network[J]. Telecommunication Systems, 2013, 52(1): 121-137. doi: 10.1007/s11235-011-9464-x
    [2] ENGE P, PARKINSON B, SPILKER J Jr, et al. Global positioning system: Theory and Applications, 2-Volume Set[M]. Reston: AIAA, 1996.
    [3] GATES R M, LA H R NAPOLITANO J. 2010 federal radionavigation plan[R]. Massachusetts: Volpe National Transportation Systems Center (US), 2011: 71-91.
    [4] 陈含智, 孙蕊, 邱明, 等. 基于自适应噪声方差的卫星定位故障检测法[J]. 北京航空航天大学学报, 2023, 49(2): 406-421.

    CHEN H Z, SUN R, QIU M, et al. An adaptive noise variance based fault detection algorithm for GNSS positioning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 406-421(in Chinese).
    [5] PANEL G. GNSS Evolutionary architecture study(GEAS)phase -II panel report[R]. Washington, D. C. : FAA, 2010: 10-12.
    [6] 肖伟, 刘文祥, 徐博, 等. LPV-200下中国区域内 ARAIM 可用性评估[J]. 全球定位系统, 2014, 39(5): 32-36.

    XIAO W, LIU W X, XU B, et al. The current ARAIM availability in China according to LPV-200[J]. GNSS World of China, 2014, 39(5): 32-36(in Chinese).
    [7] JOERGER M, PERVAN B. Multi-constellation ARAIM exploiting satellite motion[J]. Navigation, 2020, 67(2): 235-253. doi: 10.1002/navi.334
    [8] ZHAI Y W, ZHAN X Q, CHANG J, et al. ARAIM with more than two constellations[C]// Proceedings of the ION 2019 Pacific PNT Meeting. Manassas: ION, 2019: 925-941.

    ZHAI Y W, ZHAN X Q, CHANG J, et al. ARAIM with more than two constellations[C]// Proceedings of the ION 2019 Pacific PNT Meeting. Manassas: ION, 2019: 925-941.
    [9] LUO S L, WANG L, TU R, et al. Satellite selection methods for multi-constellation advanced RAIM[J]. Advances in Space Research, 2020, 65(5): 1503-1517. doi: 10.1016/j.asr.2019.12.015
    [10] 王崇宇, 尹凯, 李锐, 等. ARAIM算法在多星座中的全球可用性分析[J]. 导航定位学报, 2022, 10(3): 101-109. doi: 10.3969/j.issn.2095-4999.2022.03.014

    WANG C Y, YIN K, LI R, et al. Global availability analysis of ARAIM algorithm in multiple constellations[J]. Journal of Navigation and Positioning, 2022, 10(3): 101-109(in Chinese). doi: 10.3969/j.issn.2095-4999.2022.03.014
    [11] 王尔申, 杨迪, 宏晨, 等. ARAIM技术研究进展[J]. 电信科学, 2019, 35(8): 128-138.

    WANG E S, YANG D, HONG C, et al. Research progress of ARAIM technology[J]. Telecommunications Science, 2019, 35(8): 128-138(in Chinese).
    [12] BROWN R G, MCBURNEY P W. Self-contained GPS integrity check using maximum solution separation[J]. Navigation, 1988, 35(1): 41-53. doi: 10.1002/j.2161-4296.1988.tb00939.x
    [13] BLANCH J, WALTER T, ENGE P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation[C]//Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation. Manassas: ION, 2012: 2828-2849.

    BLANCH J, WALTER T, ENGE P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation[C]//Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation. Manassas: ION, 2012: 2828-2849.
    [14] JOERGER M, STEVANOVIC S, CHAN F C, et al. Integrity risk and continuity risk for fault detection and exclusion using solution separation araim[J]. Navigation, 2013, 60(1): 53-69.
    [15] BLANCH J, WALTER T, ENGE P. Optimal positioning for advanced raim[J]. Navigation, 2013, 60(4): 279-289. doi: 10.1002/navi.49
    [16] 宋恺. GNSS自主完好性检测算法研究[D]. 南京: 南京航空航天大学, 2017: 51-64.

    SONG K. Research on GNSS autonomous integrity detection algorithm[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 51-64(in Chinese).
    [17] 郑学恩, 许承东, 范国超, 等. 应用遗传算法的多星座保护级别优化方法[J]. 北京理工大学学报, 2018, 38(10): 1046-1050.

    ZHENG X E, XU C D, FAN G C, et al. Multi-constellation protection level optimization method using genetic algorithm[J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1046-1050(in Chinese).
    [18] 荆帅, 战兴群, 苏先礼. ARAIM算法应用于LPV-200服务[J]. 测控技术, 2012, 31(11): 75-79. doi: 10.3969/j.issn.1000-8829.2012.11.018

    JING S, ZHAN X Q, SU X L. Exploration of advanced RAIM to provide LPV-200 service[J]. Measurement & Control Technology, 2012, 31(11): 75-79(in Chinese). doi: 10.3969/j.issn.1000-8829.2012.11.018
    [19] 韩清清, 王利, 罗思龙, 等. ARAIM算法的风险概率优化分配[J]. 测绘学报, 2021, 50(12): 1751-1761. doi: 10.11947/j.AGCS.2021.20200260

    HAN Q Q, WANG L, LUO S L, et al. Optimal allocation of risk probability based on ARAIM algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1751-1761(in Chinese). doi: 10.11947/j.AGCS.2021.20200260
    [20] 王尔申, 孙彩苗, 佟刚, 等. 基于PSO的多星座GNSS垂直保护级优化方法[J]. 北京航空航天大学学报, 2021, 47(11): 2175-2180.

    WANG E S, SUN C M, TONG G, et al. Optimization method of multi-constellation GNSS vertical protection level based on particle swarm optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2175-2180(in Chinese).
    [21] BLANCH J, WALTER T, ENGE P. A framework for analyzing architectures that support ARAM[J]. Interconnectedness of Relationships Industrial Marketing Management, 2000, 29(4): 155-165.
    [22] Working Group C, EU-U. S. ARAIM concept of operation[EB/OL]. [2022-11-15]. https://portal.icao.int/nsp/meetingdocuments/NSP4-10-20-October2017/NSP4_ip18_HARAIMCo-nOps_final.docx.
    [23] 罗思龙. GNSS用户级完好性监测算法理论、性能评估及优化研究[D]. 西安: 长安大学, 2019: 26-28.

    LUO S L. Research on the theory, performance evaluation and optimization of GNSS user-level integrity monitoring algorithm[D]. Xi’an: Changan University, 2019: 26-28(in Chinese).
    [24] 战兴群, 苏先礼. GNSS完好性监测及辅助性能增强技术[M]. 北京: 科学出版社, 2016: 45-48.

    ZHAN X Q, SU X L. GNSS integrity monitoring and assisted performance enhancement technology[M]. Beijing: Science Press, 2016: 45-48(in Chinese).
    [25] AUSTIN III L J, BUTTIGIEG P, MAYORKAS A N. 2021 Federal Radionavigation Plan[R/OL]. Massachusetts: Volpe National Transportation Systems Center(US) [2022-11-15]. https://rosap.ntl.bts.gov/view/dot/63024.
    [26] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching–Learning-Based Optimization: An optimization method for continuous non-linear large scale problems[J]. Information Sciences, 2012, 183(1): 1-15. doi: 10.1016/j.ins.2011.08.006
    [27] 拓守恒, 雍龙泉, 邓方安. “教与学” 优化算法研究综述[J]. 计算机应用研究, 2013, 30(7): 1933-1938. doi: 10.3969/j.issn.1001-3695.2013.07.003

    TUO S H, YONG L Q, DENG F A. Survey of teaching-learning-based optimization algorithms[J]. Application Research of Computers, 2013, 30(7): 1933-1938(in Chinese). doi: 10.3969/j.issn.1001-3695.2013.07.003
    [28] FAA. Global positioning system standard positioning service performance standard(5th edition)[EB/OL]. (2020-04)[2022-11-15]. https://www.gps.gov/technical/ps/.
    [29] 中国卫星导航系统管理办公室. 北斗卫星导航系统公开服务性能规范(3.0版)[EB/OL]. (2021-05-26)[2021-06-05]. http://www.beidou.gov.cn/xt/gfxz/.

    China Satellite Navigation Office. BeiDou navigation satellite system open service performance standard (Version 3.0)[EB/OL]. (2021-05-26)[2021-06-05]. http://www.beidou.gov.cn/xt/gfxz/(in Chinese).
    [30] European GNSS Service Centre.Galileo open service service definition document (OS SDD), issue 1.1[EB/OL]. (2019-05)[2021-06-05]. https://galileognss.eu/galileo-gnss-documents/.
    [31] SUN R, FU L X, CHENG Q, et al. Resilient pseudorange error prediction and correction for GNSS positioning in urban areas[J]. IEEE Internet of Things Journal, 2023, 10(11): 9979-9988. doi: 10.1109/JIOT.2023.3235483
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  149
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 录用日期:  2023-03-17
  • 网络出版日期:  2023-05-11
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答