-
摘要:
目前,以安全为导向的城市智能交通应用正不断扩展,此类应用不仅对全球卫星导航系统(GNSS)的精度有着一定的要求,同时对GNSS 的完好性也提出了新的挑战。先进接收机自主完好性监测(ARAIM)技术作为一种低成本、自主性强的完好性监测算法,目前已经在空旷的航空领域受到广泛的关注,但是在城市环境的应用尚属空白,且面向航空应用空旷环境下的传统ARAIM算法对完好性风险和连续性风险分配较为简单、导致计算的保护级数值过于保守。针对上述问题,本文提出一种基于教与学(TLBO)算法的保护级优化方法,可以实现城市道路安全的完好性需求下完好性风险和连续性风险的合理分配,从而提高多星座ARAIM的可用性。车载实测数据表明,在全球定位系统(GPS)+伽利略卫星导航系统(GAL)双星座场景下,水平保护级(HPL)和垂直保护级(VPL)的平均优化率为50.58%和44.14%,10 m级告警门限(AL)对应的ARAIM可用性提高了51.29%;GPS+GAL+BDS多星座场景下,HPL和VPL的平均优化率为59.59%和56.33%,10 m级AL对应的ARAIM可用性提高了99.29%。
-
关键词:
- 先进接收机自主完好性监测 /
- 垂直保护级 /
- 水平保护级 /
- 风险概率分配 /
- 教与学算法
Abstract:Safety-critical intelligent transportation systems (ITS) applications are surging in recent years. These kinds of applications not only have the accuracy but also the integrity of global navigation satellite system (GNSS) positioning services. In the field of aviation with an open environment, advanced receiver autonomous integrity monitoring (ARAIM) has been widely concerned as a low-cost, highly autonomous integrity monitoring method. However, there are still gaps in the application of urban environments. Moreover, the probability of integrity risk and continuity risk of traditional ARAIM algorithm which is applied for aviation applications in the open environment has been equally allocated, resulting in the relatively conservative protection level. In order to solve the above problems, this paper proposes a protection-level optimization method based on Teaching-learning-based optimization (TLBO), which can realize the reasonable allocation of integrity risk and continuity risk under the integrity requirements of urban road safety, so as to improve the availability of multi-constellation ARAIM. The on-board measured data shows that under the global position system(GPS) + Galileo satellite navigation system (GAL) dual constellation scenario, the average optimization rates of horizontal protection level (HPL) and vertical protection level (VPL) are 50.58% and 44.14%, and the availability of ARAIM for the 10-meter alert limit (AL) is increased by 51.29%. In the GPS+GAL+BDS multi-constellation scenario, the average optimization rates of HPL and VPL are 59.59% and 56.33%, and the availability of ARAIM for the 10-meter AL is improved by 99.29%.
-
Key words:
- ARAIM /
- VPL /
- HPL /
- risk probability allocation /
- TLBO
-
表 1 ISM参数定义
Table 1. Definitions of ISM parameter
参数 定义 Psat,i 一定时间内卫星i发生故障的先验概率 Pconst,j 一定时间内星座j发生故障的先验概率 σURA,i 用户测距精度,用于评估完好性的高斯分布标准差 σURE,i 用户测距误差,用于评估精度和连续性的高斯分布标准差 bnom,i 用于评估完好性的正常状态下最大伪距偏差 表 2 公路用户的导航性能需求
Table 2. Navigation requirements of highway user
需求 完好性/m 连续性 精度/m 可用性/% 导航和路线引导 2~20 待定 1~20 95 自动车辆监控 0.2~30 0.1~20 95 自动车辆识别 3 1 99.7 公共安全 0.2~30 0.1~30 95~99.7 资源管理 0.2~1 0.005~30 99.7 避撞 0.2 0.1 99.9 智能交通 0.2 0.1 99.9 表 3 货运用户的导航性能需求
Table 3. Navigation requirements of rail user
需求 完好性/m 连续性 精度/m 可用性/% 停车场 50 待定 2~20 95 地理围栏 10 10~20 99 危险品运输 10 10~20 99 拖车跟踪 50 20 95 沿海运输违规检查 10 10~20 99 车队管理 50 20 95 驾考 10 5~20 99 星座 Psat Pconst σURE σURA bnom GPS 1×10−5 1×10−8 1.0 1.5 0.75 GAL 3×10−5 2×10−4 1.0 1.5 0.75 BDS 1×10−5 6×10−5 1.0 1.5 0.75 表 5 双星座和多星座组合下的平均保护级优化率
Table 5. Average protection level optimization ratios for dual and multi-constellation systems
星座 ˉHPL ˉHPL优化
率/%ˉVPL ˉVPL优化
率/%优化前 优化后 优化前 优化后 GPS+GAL 21.49 10.62 50.58 11.78 6.58 44.14 GPS+GAL+BDS 17.67 7.14 59.59 8.06 3.52 56.33 表 6 不同应用需求门限下的ARAIM可用性提高率
Table 6. ARAIM availability improvement rates under different application requirements thresholds
星座 需求门限/m 优化前
可用性/%优化后
可用性/%提高率/% GPS+GAL 10 0.00 51.29 51.29 20 47.86 99.14 51.29 30 96.43 99.71 3.29 40 99.57 100.00 0.43 50 99.71 100.00 0.29 GPS+GAL+BDS 10 0.00 99.29 99.29 20 88.71 100.00 11.29 30 98.71 100.00 0.00 40 100.00 100.00 0.00 50 100.00 100.00 0.00 表 7 有遮挡场景下双星座和多星座组合的平均保护级优化率
Table 7. Average protection level optimization ratios for dual and multi-constellation systems with obscured scenes
星座 ˉHPL 优化率/% 优化前 优化后 GPS+GAL 21.48 9.76 54.56 GPS+GAL+BDS 18.45 7.16 61.19 -
[1] ILCEV D S. Development and characteristics of African Satellite Augmentation System (ASAS) network[J]. Telecommunication Systems, 2013, 52(1): 121-137. doi: 10.1007/s11235-011-9464-x [2] ENGE P, PARKINSON B, SPILKER J Jr, et al. Global positioning system: Theory and Applications, 2-Volume Set[M]. Reston: AIAA, 1996. [3] GATES R M, LA H R NAPOLITANO J. 2010 federal radionavigation plan[R]. Massachusetts: Volpe National Transportation Systems Center (US), 2011: 71-91. [4] 陈含智, 孙蕊, 邱明, 等. 基于自适应噪声方差的卫星定位故障检测法[J]. 北京航空航天大学学报, 2023, 49(2): 406-421.CHEN H Z, SUN R, QIU M, et al. An adaptive noise variance based fault detection algorithm for GNSS positioning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 406-421(in Chinese). [5] PANEL G. GNSS Evolutionary architecture study(GEAS)phase -II panel report[R]. Washington, D. C. : FAA, 2010: 10-12. [6] 肖伟, 刘文祥, 徐博, 等. LPV-200下中国区域内 ARAIM 可用性评估[J]. 全球定位系统, 2014, 39(5): 32-36.XIAO W, LIU W X, XU B, et al. The current ARAIM availability in China according to LPV-200[J]. GNSS World of China, 2014, 39(5): 32-36(in Chinese). [7] JOERGER M, PERVAN B. Multi-constellation ARAIM exploiting satellite motion[J]. Navigation, 2020, 67(2): 235-253. doi: 10.1002/navi.334 [8] ZHAI Y W, ZHAN X Q, CHANG J, et al. ARAIM with more than two constellations[C]// Proceedings of the ION 2019 Pacific PNT Meeting. Manassas: ION, 2019: 925-941.ZHAI Y W, ZHAN X Q, CHANG J, et al. ARAIM with more than two constellations[C]// Proceedings of the ION 2019 Pacific PNT Meeting. Manassas: ION, 2019: 925-941. [9] LUO S L, WANG L, TU R, et al. Satellite selection methods for multi-constellation advanced RAIM[J]. Advances in Space Research, 2020, 65(5): 1503-1517. doi: 10.1016/j.asr.2019.12.015 [10] 王崇宇, 尹凯, 李锐, 等. ARAIM算法在多星座中的全球可用性分析[J]. 导航定位学报, 2022, 10(3): 101-109. doi: 10.3969/j.issn.2095-4999.2022.03.014WANG C Y, YIN K, LI R, et al. Global availability analysis of ARAIM algorithm in multiple constellations[J]. Journal of Navigation and Positioning, 2022, 10(3): 101-109(in Chinese). doi: 10.3969/j.issn.2095-4999.2022.03.014 [11] 王尔申, 杨迪, 宏晨, 等. ARAIM技术研究进展[J]. 电信科学, 2019, 35(8): 128-138.WANG E S, YANG D, HONG C, et al. Research progress of ARAIM technology[J]. Telecommunications Science, 2019, 35(8): 128-138(in Chinese). [12] BROWN R G, MCBURNEY P W. Self-contained GPS integrity check using maximum solution separation[J]. Navigation, 1988, 35(1): 41-53. doi: 10.1002/j.2161-4296.1988.tb00939.x [13] BLANCH J, WALTER T, ENGE P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation[C]//Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation. Manassas: ION, 2012: 2828-2849.BLANCH J, WALTER T, ENGE P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation[C]//Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation. Manassas: ION, 2012: 2828-2849. [14] JOERGER M, STEVANOVIC S, CHAN F C, et al. Integrity risk and continuity risk for fault detection and exclusion using solution separation araim[J]. Navigation, 2013, 60(1): 53-69. [15] BLANCH J, WALTER T, ENGE P. Optimal positioning for advanced raim[J]. Navigation, 2013, 60(4): 279-289. doi: 10.1002/navi.49 [16] 宋恺. GNSS自主完好性检测算法研究[D]. 南京: 南京航空航天大学, 2017: 51-64.SONG K. Research on GNSS autonomous integrity detection algorithm[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 51-64(in Chinese). [17] 郑学恩, 许承东, 范国超, 等. 应用遗传算法的多星座保护级别优化方法[J]. 北京理工大学学报, 2018, 38(10): 1046-1050.ZHENG X E, XU C D, FAN G C, et al. Multi-constellation protection level optimization method using genetic algorithm[J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1046-1050(in Chinese). [18] 荆帅, 战兴群, 苏先礼. ARAIM算法应用于LPV-200服务[J]. 测控技术, 2012, 31(11): 75-79. doi: 10.3969/j.issn.1000-8829.2012.11.018JING S, ZHAN X Q, SU X L. Exploration of advanced RAIM to provide LPV-200 service[J]. Measurement & Control Technology, 2012, 31(11): 75-79(in Chinese). doi: 10.3969/j.issn.1000-8829.2012.11.018 [19] 韩清清, 王利, 罗思龙, 等. ARAIM算法的风险概率优化分配[J]. 测绘学报, 2021, 50(12): 1751-1761. doi: 10.11947/j.AGCS.2021.20200260HAN Q Q, WANG L, LUO S L, et al. Optimal allocation of risk probability based on ARAIM algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1751-1761(in Chinese). doi: 10.11947/j.AGCS.2021.20200260 [20] 王尔申, 孙彩苗, 佟刚, 等. 基于PSO的多星座GNSS垂直保护级优化方法[J]. 北京航空航天大学学报, 2021, 47(11): 2175-2180.WANG E S, SUN C M, TONG G, et al. Optimization method of multi-constellation GNSS vertical protection level based on particle swarm optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2175-2180(in Chinese). [21] BLANCH J, WALTER T, ENGE P. A framework for analyzing architectures that support ARAM[J]. Interconnectedness of Relationships Industrial Marketing Management, 2000, 29(4): 155-165. [22] Working Group C, EU-U. S. ARAIM concept of operation[EB/OL]. [2022-11-15]. https://portal.icao.int/nsp/meetingdocuments/NSP4-10-20-October2017/NSP4_ip18_HARAIMCo-nOps_final.docx. [23] 罗思龙. GNSS用户级完好性监测算法理论、性能评估及优化研究[D]. 西安: 长安大学, 2019: 26-28.LUO S L. Research on the theory, performance evaluation and optimization of GNSS user-level integrity monitoring algorithm[D]. Xi’an: Changan University, 2019: 26-28(in Chinese). [24] 战兴群, 苏先礼. GNSS完好性监测及辅助性能增强技术[M]. 北京: 科学出版社, 2016: 45-48.ZHAN X Q, SU X L. GNSS integrity monitoring and assisted performance enhancement technology[M]. Beijing: Science Press, 2016: 45-48(in Chinese). [25] AUSTIN III L J, BUTTIGIEG P, MAYORKAS A N. 2021 Federal Radionavigation Plan[R/OL]. Massachusetts: Volpe National Transportation Systems Center(US) [2022-11-15]. https://rosap.ntl.bts.gov/view/dot/63024. [26] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching–Learning-Based Optimization: An optimization method for continuous non-linear large scale problems[J]. Information Sciences, 2012, 183(1): 1-15. doi: 10.1016/j.ins.2011.08.006 [27] 拓守恒, 雍龙泉, 邓方安. “教与学” 优化算法研究综述[J]. 计算机应用研究, 2013, 30(7): 1933-1938. doi: 10.3969/j.issn.1001-3695.2013.07.003TUO S H, YONG L Q, DENG F A. Survey of teaching-learning-based optimization algorithms[J]. Application Research of Computers, 2013, 30(7): 1933-1938(in Chinese). doi: 10.3969/j.issn.1001-3695.2013.07.003 [28] FAA. Global positioning system standard positioning service performance standard(5th edition)[EB/OL]. (2020-04)[2022-11-15]. https://www.gps.gov/technical/ps/. [29] 中国卫星导航系统管理办公室. 北斗卫星导航系统公开服务性能规范(3.0版)[EB/OL]. (2021-05-26)[2021-06-05]. http://www.beidou.gov.cn/xt/gfxz/.China Satellite Navigation Office. BeiDou navigation satellite system open service performance standard (Version 3.0)[EB/OL]. (2021-05-26)[2021-06-05]. http://www.beidou.gov.cn/xt/gfxz/(in Chinese). [30] European GNSS Service Centre.Galileo open service service definition document (OS SDD), issue 1.1[EB/OL]. (2019-05)[2021-06-05]. https://galileognss.eu/galileo-gnss-documents/. [31] SUN R, FU L X, CHENG Q, et al. Resilient pseudorange error prediction and correction for GNSS positioning in urban areas[J]. IEEE Internet of Things Journal, 2023, 10(11): 9979-9988. doi: 10.1109/JIOT.2023.3235483 -