-
摘要:
结冰探测是飞机结冰防护系统运行的前提和依据,是结冰防护面临的首要问题。目前,针对探针结冰过程的研究缺乏实测数据,相关规律尚待验证。为更准确地模拟飞机遭遇的真实结冰环境,利用大型结冰风洞开展传感器结冰特性试验研究。采用探针阵列分布和冰形可重复性验证相结合的试验方法,通过在线实拍图像、实测结冰外形与结冰质量等数据,直观、定量地揭示探针表面水滴撞击的细节特征及变化规律。结果表明:探针圆柱表面的水收集系数沿轴向先增大后减小,存在极值点,且该点高度会随壁面边界层的发展逐步上升,变化量级处于2~30 mm之间;此外,各探针位置面对来流参数变化的敏感程度不同,结冰质量较大且对迎角变化敏感度较低的点,将具备更好的探测效果。实测数据与分析结果可为传感器探针的精确设计提供依据。
Abstract:Icing detection is the premise and basis for the operation of aircraft icing protection systems, and it is the primary problem faced by icing protection. At present, the research on the probe icing process lacks the measured data, and the relevant laws need to be verified. Therefore, in order to simulate the real icing environment encountered by the aircraft more accurately, the large-scale icing wind tunnel was used to carry out experimental research on the icing characteristics of the sensor. A test method combining probe array distribution and ice shape repeatability verification was used, and online images, measured ice shape, and ice quality were utilized to reveal the detailed characteristics and changing rules of water droplets impacting the probe surface visually and quantitatively. The results show that the water collection coefficient on the cylinder surface of the probe first increases and then decreases along the axial direction, and there is an extreme point. The height of this point will gradually increase with the development of the wall boundary layer, and the variety ranges from 2 mm to 30 mm. In addition, each probe position has different sensitivity to changes in incoming flow parameters, and the points with higher icing quality and lower sensitivity to changes in attack angle will have better detection effects. The measured data and analysis in this paper can provide a basis for the accurate design of the sensor probe.
-
Key words:
- icing detection /
- droplet impact /
- icing characteristics /
- icing wind tunnel /
- boundary layer
-
表 1 环境模拟条件
Table 1. Environmental simulation conditions
工况 温度/℃ 速度/(m·s−1) 迎角/(°) 水滴直径/μm 时间/s 1 −10 90 2 20 180 2 −10 90 2 30 180 3 −25 90 4 20 80 4 −25 90 6 20 80 5 −25 65 2 15 300 6 −25 40 2 15 300 7 −25 65 2 20 80 8 −25 90 2 20 80 9 −25 65 2 30 80 10 −25 90 2 30 80 11 −25 40 2 20 80 -
[1] 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京: 航空专业教材编审组, 1985.QIU X G, HAN F H. Aircraft anti-icing system[M]. Beijing: Aeronautic Specialty Textbook Read and Edit Group, 1985(in Chinese). [2] 林贵平. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.LIN G P. Aircraft icing and anti-icing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2016(in Chinese). [3] 魏扬, 徐浩军, 薛源, 等. 机翼前缘积冰对大飞机操稳特性的影响[J]. 北京航空航天大学学报, 2019, 45(6): 1088-1095.WEI Y, XU H J, XUE Y, et al. Influence of ice accretion on leading edge of wings on stability and controllability of large aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1088-1095(in Chinese). [4] LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. doi: 10.1016/S0376-0421(01)00018-5 [5] THOMAS S K, CASSONI R P, MACARTHUR C D. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft, 1996, 33(5): 841-854. doi: 10.2514/3.47027 [6] 张杰, 周磊, 张洪, 等. 飞机结冰探测技术[J]. 仪器仪表学报, 2006, 27(12): 1578-1586. doi: 10.3321/j.issn:0254-3087.2006.12.005ZHANG J, ZHOU L, ZHANG H, et al. Aircraft icing detection technology[J]. Chinese Journal of Scientific Instrument, 2006, 27(12): 1578-1586(in Chinese). doi: 10.3321/j.issn:0254-3087.2006.12.005 [7] 尹胜生, 叶林, 陈斌, 等. 可识别冰型的光纤结冰传感器[J]. 仪表技术与传感器, 2012(5): 9-11. doi: 10.3969/j.issn.1002-1841.2012.05.003YIN S S, YE L, CHEN B, et al. Fiber-optical icing sensor for detecting the icing type[J]. Instrument Technique and Sensor, 2012(5): 9-11(in Chinese). doi: 10.3969/j.issn.1002-1841.2012.05.003 [8] 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 1-12.GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 1-12(in Chinese). [9] 朱程香, 孙志国, 付斌, 等. 探头式结冰探测器安装位置分析[J]. 航空动力学报, 2011, 26(12): 2676-2683.ZHU C X, SUN Z G, FU B, et al. Analysis on installation location of probe-style ice detectors[J]. Journal of Aerospace Power, 2011, 26(12): 2676-2683(in Chinese). [10] 熊海霞, 袁冬莉, 张正明. 无人机结冰探测器仿真研究[J]. 电子设计工程, 2015, 23(5): 84-86. doi: 10.3969/j.issn.1674-6236.2015.05.026XIONG H X, YUAN D L, ZHANG Z M. The research to real-time simulation of the icing probe of one UAV[J]. Electronic Design Engineering, 2015, 23(5): 84-86(in Chinese). doi: 10.3969/j.issn.1674-6236.2015.05.026 [11] 郭琦, 申晓斌, 林贵平, 等. 飞机旋转表面结冰数值模拟[J]. 北京航空航天大学学报, 2022, 48(11): 2259-2269.GUO Q, SHEN X B, LIN G P, et al. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269(in Chinese). [12] 吴孟龙, 常士楠, 冷梦尧, 等. 基于欧拉法模拟旋转帽罩水滴撞击特性[J]. 北京航空航天大学学报, 2014, 40(9): 1263-1267.WU M L, CHANG S N, LENG M Y, et al. Simulation of droplet impingement characteristics of spinner based on Eulerian method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1263-1267(in Chinese). [13] 郭向东, 柳庆林, 赖庆仁, 等. 大型结冰风洞气流场适航符合性验证[J]. 空气动力学学报, 2021, 39(2): 184-195. doi: 10.7638/kqdlxxb-2019.0086GUO X D, LIU Q L, NAI Q R. Airworthiness compliance verification of air flow field in large icing wind tunnel[J]. Journal of Aerospace Power, 2021, 39(2): 184-195(in Chinese). doi: 10.7638/kqdlxxb-2019.0086 [14] 黄明其, 王亮权, 袁红刚, 等. 直升机前飞状态旋翼结冰风洞试验研究[J]. 北京航空航天大学学报, 2022, 48(6): 929-936.HUANG M Q, WANG L Q, YUAN H G, et al. Wind tunnel test study on rotor icing in helicopter forward flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 929-936(in Chinese). [15] 中国民用航空局. 运输类飞机适航标准: CCAR25-R4[S]. 北京: 中国民用航空局, 2011.10.Civil Aviation Administration of China. Airworthiness Standards for Transport Aircraft : CCAR25-R4[S]. Beijing: Civil Aviation Administration of China, 2011: 10(in Chinese). [16] 郭向东, 张平涛, 赵照, 等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报, 2020, 41(10): 200-214. doi: 10.7527/S1000-6893.2020.23879GUO X D, ZHANG P T, ZHAO Z, et al. Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 200-214(in Chinese). doi: 10.7527/S1000-6893.2020.23879 [17] SAE Aerospace. Icing wind tunnel interfacility comparison test: SAE ARP5666[S]. New York: SAE, 2012. [18] 刘森云, 王乔, 易贤, 等. 3m×2m结冰风洞试验技术新进展(2020年-2022年)[J]. 空气动力学学报, 2023, 41(1): 57-65. doi: 10.7638/kqdlxxb-2022.0167LIU S Y, WANG Q, YI X. New progress of 3m×2m icing wind tunnel test technology (2020-2022)[J]. Acta Aerodynamica Sinica, 2023, 41(1): 57-65(in Chinese). doi: 10.7638/kqdlxxb-2022.0167 -