Kinematic characteristics analysis of vehicle-aircraft towing taxi system considering wheel deformation
-
摘要:
为探究抱轮机构与飞机前起落架机轮约束关系对牵引系统运动学特性的影响,基于Winkler接触模型建立了飞机前起落架机轮径向受力与径向接触形变的关系,以Douglas TBL-180无杆飞机牵引车和B737-800客机为参考对象,建立牵引车-飞机系统运动学模型,在抱轮机构与飞机前起落架机轮不同约束关系下,探究多种工况下牵引车与飞机加速度偏移的变化规律。结果表明:飞机前起落架机轮径向受力与径向接触形变具有较强的非线性关系,对牵引系统的运动特性具有较大影响;在加速与制动状态下,飞机前起落架机轮两端约束力的增大都将减小牵引车与飞机加速度的偏移,但在加速状态下,约束力的增大为加速度偏移减小的主要影响因素,而在制动状态下,约束力增大到一定值(约
10000 N)后对加速度偏移影响很小。-
关键词:
- 牵引滑出 /
- 前起落架机轮 /
- 抱轮机构 /
- Winkler接触模型 /
- 加速度偏移
Abstract:To explore the influence of the restraint relationship between the wheel-holding mechanism and the nose landing gear wheel on the kinematic characteristics of the towing system, this paper established the relationship between the radial force and radial contact deformation of the aircraft nose landing gear wheel based on the Winkler contact model. With the Douglas TBL-180 towbarless aircraft tractor and B737-800 passenger aircraft as reference objects, the kinematic model of the tractor-aircraft system was established, and under the different constraint relationships between the wheel-holding mechanism and the nose landing gear wheel, the change law of the acceleration bias of the tractor and the aircraft under various operating conditions was explored. The results show that the radial force of the nose landing gear wheel has a strong nonlinear relationship with the radial contact deformation, which greatly influences the motion characteristics of the towing system. Under the acceleration and braking states, the increase in the constraint force at both ends of the nose landing gear wheel will reduce the acceleration bias of the tractor and the aircraft. However, under the acceleration state, the increase in the constraint force is the main influencing factor for the decrease in the acceleration bias, and under the braking state, the constraint force has little effect on the acceleration bias when increasing to a certain value (about 10 000 N).
-
参数 数值 重心距地面的垂直距离/mm 2760.7 重心距主起轮轴水平距离/mm 1267.6 质量/kg 75976.7 飞机x轴转动惯量/(kg·mm2) 1.254×1012 飞机y轴转动惯量/(kg·mm2) 4.202×1012 飞机z轴转动惯量/(kg·mm2) 5.286×1012 两主起落架之间的距离/mm 5714.6 前起到后起水平距离/mm 15596 质心距离地面的垂直距离/mm 2760.7 质心距离前起的水平距离/mm 14328.4 牵引过程中前起被抬起高度/mm 280 轮胎 轮胎质量/
kg自由半径/
mm胎面宽度/
mm高宽比 法向刚度系数/
(N·mm−1)法向阻尼系数/
(N·mm−1)滚动阻力
系数纵向刚度/
(N·mm−1)侧偏刚度/
(N·mm−1)静摩擦
因数动摩擦
因数前轮 140 365.5 250 0.68 1000 25 0.017 5000 1000 0.8 1 后轮 190 421.25 355 0.84 4500 25 0.017 5000 1000 0.8 1 轮胎 轮胎质量/
kg自由半径/
mm胎面宽度/
mm高宽比 法向刚度系数/
(N·mm−1)法向阻尼系数/
(N·mm−1)滚动阻力
系数纵向刚度/
(N·mm−1)侧偏刚度/
(N·mm−1)静摩擦
因数动摩擦
因数前轮 50 343 196.8 0.547 2400 28 0.017 2000 800 0.8 1 后轮 150 568 419 0.74 2800 28 0.017 6000 800 0.8 1 表 4 牵引车牵引力仿真值与理论值
Table 4. Simulation and theoretical values of traction force of tractor
加速度/
(mm·s−2)牵引车牵引力
理论计算值/N牵引车牵引力
仿真平均值/N仿真值与理论值
偏差/%300 33771.61 33959.8 0.55 450 45168.1 45232.83 0.14 600 56564.6 56975.91 0.72 -
[1] 许致华, 焦永涛, 洪振宇. 新型无杆飞机牵引车夹持机构[J]. 起重运输机械, 2012, 443(1): 76-80. doi: 10.3969/j.issn.1001-0785.2012.01.024XU Z H, JIAO Y T, HONG Z Y. Clamping mechanism of a new type of rodless aircraft tractor[J]. Hoisting and Conveying Machinery, 2012, 443(1): 76-80(in Chinese). doi: 10.3969/j.issn.1001-0785.2012.01.024 [2] 洪振宇, 许致华, 张志旭, 等. 无杆飞机牵引车机轮举升机构的概念设计与尺度综合[J]. 机械设计, 2013, 30(11): 47-52. doi: 10.3969/j.issn.1001-2354.2013.11.010HONG Z Y, XU Z H, ZHANG Z X, et al. Conceptual design and dimensional synthesis of nosewheel lifting mechanism in a towbarless aircraft towing tractor[J]. Journal of Machine Design, 2013, 30(11): 47-52(in Chinese). doi: 10.3969/j.issn.1001-2354.2013.11.010 [3] 宋贺铮, 于鸿彬. 新型飞机牵引车夹持举升机构运动学分析[J]. 起重运输机械, 2019, 527(1): 119-123. doi: 10.3969/j.issn.1001-0785.2019.01.012SONG H Z, YU H B. Kinematics analysis of the clamping and lifting mechanism of new aircraft tractor[J]. Hoisting and Conveying Machinery, 2019, 527(1): 119-123(in Chinese). doi: 10.3969/j.issn.1001-0785.2019.01.012 [4] 金嘉琦, 戚基艳, 高雪, 等. 无杆式飞机牵引车夹持举升机构设计[J]. 起重运输机械, 2019, 544(18): 53-58. doi: 10.3969/j.issn.1001-0785.2019.18.026JIN J Q, QI J Y, GAO X, et al. Design of clamping and lifting mechanism for towbarless aircraft tractor[J]. Hoisting and Conveying Machinery, 2019, 544(18): 53-58(in Chinese). doi: 10.3969/j.issn.1001-0785.2019.18.026 [5] XING Z W, LV Y, LI J H. Finite element analysis and structure design for chassis of aircraft towbarless tractor[J]. Advanced Materials Research, 2011, 328-330: 690-694. doi: 10.4028/www.scientific.net/AMR.328-330.690 [6] 朱敏, 刘晖, 陈舒文. 凹坑路面条件下飞机地面牵引载荷的仿真分析[J]. 机械制造与自动化, 2014, 43(2): 94-98. doi: 10.3969/j.issn.1671-5276.2014.02.031ZHU M, LIU H, CHEN S W. Simulation analysis of aircraft ground traction load under pit road conditions[J]. Machine Building & Automation, 2014, 43(2): 94-98(in Chinese). doi: 10.3969/j.issn.1671-5276.2014.02.031 [7] 解本铭, 朱俊伟, 王伟, 等. 飞机无杆牵引车多工况牵引的平顺性仿真及优化[J]. 机械设计与制造, 2020, 356(10): 1-5. doi: 10.3969/j.issn.1001-3997.2020.10.001XIE B M, ZHU J W, WANG W, et al. Simulation and optimization of ride comfort on multi-working for aircraft rodless tractor[J]. Machinery Design & Manufacture, 2020, 356(10): 1-5(in Chinese). doi: 10.3969/j.issn.1001-3997.2020.10.001 [8] 沈圳, 刘晖, 母梦新. 飞机无杆牵引安全技术研究[J]. 南京航空航天大学学报, 2019, 51(6): 819-827.SHEN Z, LIU H, MU M X. Aircraft towbarless traction safety technology[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(6): 819-827(in Chinese). [9] 王能建, 周丽杰, 刘红博. 甲板上牵引车-直升机系统的稳定性控制[J]. 上海交通大学学报, 2012, 46(7): 1146-1152.WANG N J, ZHOU L J, LIU H B. Study on stability control for tractor-helicopter system on deck[J]. Journal of Shanghai Jiao Tong University, 2012, 46(7): 1146-1152(in Chinese). [10] YU M H, GONG X, FAN G W, et al. Trajectory planning and tracking for carrier aircraft-tractor system based on autonomous and cooperative movement[J]. Mathematical Problems in Engineering, 2020, 2020: 6531984. [11] LIU J, DONG X Z, WANG J Y, et al. A novel EPT autonomous motion control framework for an off-axle hitching tractor-trailer system with drawbar[J]. IEEE Transactions on Intelligent Vehicles, 2020, 6(2): 376-385. [12] JOHNSTON J S, SWENSON E D. Feasibility study of global-positioning-system-based aircraft-carrier flight-deck persistent monitoring system[J]. Journal of Aircraft, 2010, 47(5): 1624-1635. doi: 10.2514/1.C000220 [13] 戚基艳, 金嘉琦, 付景顺. 分布式驱动舰载机无杆式牵引车的驱动防滑[J]. 兵器装备工程学报, 2020, 41(9): 210-214. doi: 10.11809/bqzbgcxb2020.09.039QI J Y, JIN J Q, FU J S. Acceleration slip regulation of carrier-based aircraft towbarless tractor[J]. Journal of Ordnance Equipment Engineering, 2020, 41(9): 210-214(in Chinese). doi: 10.11809/bqzbgcxb2020.09.039 [14] 陈舒文, 刘晖, 李福海, 等. 含接触碰撞的飞机地面牵引载荷分析[J]. 哈尔滨工程大学学报, 2017, 38(11): 1794-1799. doi: 10.11990/jheu.201606075CHEN S W, LIU H, LI F H, et al. Research on aircraft towing load with contact-impact effects[J]. Journal of Harbin Engineering University, 2017, 38(11): 1794-1799(in Chinese). doi: 10.11990/jheu.201606075 [15] MU M X, LIU H, CHEN D W. Analysis of effects on the load of nose landing gear by towbarless traction[C]//Proceedings of the IEEE 2nd International Conference on Civil Aviation Safety and Information Technology. Piscataway: IEEE Press, 2020: 762-768. [16] 李跃明, 李晓云, 柴怡君, 等. 飞机新牵引滑出方式下前起落架动响应分析[J]. 航空学报, 2022, 43(6): 526915.LI Y M, LI X Y, CHAI Y J, et al. Dynamic response analysis of nose landing gear in aircraft new towing and taxiing mode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526915(in Chinese). [17] 母梦新. 无杆牵引对民机前起落架的影响研究[D]. 南京: 南京航空航天大学, 2021: 20-21.MU M X. Study on the influence of rodless traction on the nose landing gear of civil aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 20-21(in Chinese). [18] 朱俊伟. 飞机无杆牵引车多工况牵引的动力学分析[D]. 天津: 中国民航大学, 2019: 14-19.ZHU J W. Dynamic analysis of aircraft towbarless tow vehicles under multi-operating conditions[D]. Tianjing: Civil Aviation University of China, 2019: 14-19(in Chinese). [19] 沈圳. 飞机无杆牵引安全技术研究[D]. 南京: 南京航空航天大学, 2019: 13-21.SHEN Z. Research on the safety technology of aircraft towbarless traction [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 13-21(in Chinese). [20] 朱贺, 李静菲. 无杆飞机牵引车转弯牵引工况下的制动稳定性分析[J]. 机械设计, 2020, 37(S1): 72-76.ZHU H , LI J F. Analysis on braking stability of towbarless towing vehicle under steering and braking[J]. Journal of Machine Design, 2020, 37(S1): 72-76(in Chinese). [21] LIU C S, ZHANG K, YANG L. Normal force-displacement relationship of spherical joints with clearances[J]. Journal of Computational and Nonlinear Dynamics, 2006, 1(2): 160-167. doi: 10.1115/1.2162872 [22] ZHU H J, ZHANG B Z, LV X, et al. Optimal chassis suspension design for towbarless towing vehicle for aircraft taxiing[J]. SAE International Journal of Advances and Current Practices in Mobility, 2022, 4(4): 1445-1453. doi: 10.4271/2022-01-0291 -