留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑机轮形变的车辆-飞机牵引滑出系统运动学特性分析

鲁鑫 孙宇宁 唐杰 张威

鲁鑫,孙宇宁,唐杰,等. 考虑机轮形变的车辆-飞机牵引滑出系统运动学特性分析[J]. 北京航空航天大学学报,2025,51(2):478-486 doi: 10.13700/j.bh.1001-5965.2023.0029
引用本文: 鲁鑫,孙宇宁,唐杰,等. 考虑机轮形变的车辆-飞机牵引滑出系统运动学特性分析[J]. 北京航空航天大学学报,2025,51(2):478-486 doi: 10.13700/j.bh.1001-5965.2023.0029
LU X,SUN Y N,TANG J,et al. Kinematic characteristics analysis of vehicle-aircraft towing taxi system considering wheel deformation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):478-486 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0029
Citation: LU X,SUN Y N,TANG J,et al. Kinematic characteristics analysis of vehicle-aircraft towing taxi system considering wheel deformation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):478-486 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0029

考虑机轮形变的车辆-飞机牵引滑出系统运动学特性分析

doi: 10.13700/j.bh.1001-5965.2023.0029
基金项目: 国家自然科学基金(U2033208);国家自然科学基金民航联合重点项目(U2233212)
详细信息
    通讯作者:

    E-mail:tangjie_cauc@163.com

  • 中图分类号: V226+.7;V351.34

Kinematic characteristics analysis of vehicle-aircraft towing taxi system considering wheel deformation

Funds: National Natural Science Foundation of China (U2033208); National Natural Science Foundation of China Civil Aviation Joint Key Project (U2233212)
More Information
  • 摘要:

    为探究抱轮机构与飞机前起落架机轮约束关系对牵引系统运动学特性的影响,基于Winkler接触模型建立了飞机前起落架机轮径向受力与径向接触形变的关系,以Douglas TBL-180无杆飞机牵引车和B737-800客机为参考对象,建立牵引车-飞机系统运动学模型,在抱轮机构与飞机前起落架机轮不同约束关系下,探究多种工况下牵引车与飞机加速度偏移的变化规律。结果表明:飞机前起落架机轮径向受力与径向接触形变具有较强的非线性关系,对牵引系统的运动特性具有较大影响;在加速与制动状态下,飞机前起落架机轮两端约束力的增大都将减小牵引车与飞机加速度的偏移,但在加速状态下,约束力的增大为加速度偏移减小的主要影响因素,而在制动状态下,约束力增大到一定值(约10000 N)后对加速度偏移影响很小。

     

  • 图 1  飞机牵引系统工作图

    Figure 1.  Working diagram of aircraft towing system

    图 2  飞机牵引系统Adams运动学仿真模型

    Figure 2.  Kinematic simulation model of aircraft towing system in Adams

    图 3  夹紧杆与机轮接触模型

    Figure 3.  Contact model between clamping rod and wheel

    图 4  Winkler简化弹性接触模型

    Figure 4.  Winkler simplified elastic contact model

    图 5  飞机前起落架机轮径向受力与径向形变

    Figure 5.  Radial force and radial deformation of nose landing gear wheel

    图 6  无杆飞机牵引系统加速与制动受力分析

    Figure 6.  Analysis of acceleration and braking force of towbarless aircraft towing system

    图 7  不同加速度牵引力仿真曲线

    Figure 7.  Simulation curves of traction force with different accelerations

    图 8  牵引车与飞机约束力为0状态

    Figure 8.  State where constraint force between tractor and aircraft is 0

    图 9  约束力为0时牵引车与飞机加速度偏移量

    Figure 9.  Acceleration bias of tractor and aircraft when constraint force is 0

    图 10  加速状态下牵引车与飞机加速度最大偏移量

    Figure 10.  Maximum acceleration bias of tractor and aircraft under acceleration state

    图 11  约束力为0时牵引车与飞机加速度偏移量

    Figure 11.  Acceleration bias of tractor and aircraft when constraint force is 0

    图 12  制动状态下牵引车与飞机加速度最大偏移量

    Figure 12.  Maximum acceleration bias of tractor and aircraft under braking state

    表  1  飞机参数设置[17-18]

    Table  1.   Aircraft parameters setting[17-18]

    参数 数值
    重心距地面的垂直距离/mm 2760.7
    重心距主起轮轴水平距离/mm 1267.6
    质量/kg 75976.7
    飞机x轴转动惯量/(kg·mm2) 1.254×1012
    飞机y轴转动惯量/(kg·mm2) 4.202×1012
    飞机z轴转动惯量/(kg·mm2) 5.286×1012
    两主起落架之间的距离/mm 5714.6
    前起到后起水平距离/mm 15596
    质心距离地面的垂直距离/mm 2760.7
    质心距离前起的水平距离/mm 14328.4
    牵引过程中前起被抬起高度/mm 280
    下载: 导出CSV

    表  2  无杆飞机牵引车的轮胎参数[17,19]

    Table  2.   Tire parameters of towbarless aircraft tractor[17,19]

    轮胎 轮胎质量/
    kg
    自由半径/
    mm
    胎面宽度/
    mm
    高宽比 法向刚度系数/
    (N·mm−1)
    法向阻尼系数/
    (N·mm−1)
    滚动阻力
    系数
    纵向刚度/
    (N·mm−1)
    侧偏刚度/
    (N·mm−1)
    静摩擦
    因数
    动摩擦
    因数
    前轮 140 365.5 250 0.68 1000 25 0.017 5000 1000 0.8 1
    后轮 190 421.25 355 0.84 4500 25 0.017 5000 1000 0.8 1
    下载: 导出CSV

    表  3  B737-800飞机轮胎参数[17,20]

    Table  3.   Tire parameters of B737-800 aircraft[17,20]

    轮胎 轮胎质量/
    kg
    自由半径/
    mm
    胎面宽度/
    mm
    高宽比 法向刚度系数/
    (N·mm−1)
    法向阻尼系数/
    (N·mm−1)
    滚动阻力
    系数
    纵向刚度/
    (N·mm−1)
    侧偏刚度/
    (N·mm−1)
    静摩擦
    因数
    动摩擦
    因数
    前轮 50 343 196.8 0.547 2400 28 0.017 2000 800 0.8 1
    后轮 150 568 419 0.74 2800 28 0.017 6000 800 0.8 1
    下载: 导出CSV

    表  4  牵引车牵引力仿真值与理论值

    Table  4.   Simulation and theoretical values of traction force of tractor

    加速度/
    (mm·s−2
    牵引车牵引力
    理论计算值/N
    牵引车牵引力
    仿真平均值/N
    仿真值与理论值
    偏差/%
    300 33771.61 33959.8 0.55
    450 45168.1 45232.83 0.14
    600 56564.6 56975.91 0.72
    下载: 导出CSV
  • [1] 许致华, 焦永涛, 洪振宇. 新型无杆飞机牵引车夹持机构[J]. 起重运输机械, 2012, 443(1): 76-80. doi: 10.3969/j.issn.1001-0785.2012.01.024

    XU Z H, JIAO Y T, HONG Z Y. Clamping mechanism of a new type of rodless aircraft tractor[J]. Hoisting and Conveying Machinery, 2012, 443(1): 76-80(in Chinese). doi: 10.3969/j.issn.1001-0785.2012.01.024
    [2] 洪振宇, 许致华, 张志旭, 等. 无杆飞机牵引车机轮举升机构的概念设计与尺度综合[J]. 机械设计, 2013, 30(11): 47-52. doi: 10.3969/j.issn.1001-2354.2013.11.010

    HONG Z Y, XU Z H, ZHANG Z X, et al. Conceptual design and dimensional synthesis of nosewheel lifting mechanism in a towbarless aircraft towing tractor[J]. Journal of Machine Design, 2013, 30(11): 47-52(in Chinese). doi: 10.3969/j.issn.1001-2354.2013.11.010
    [3] 宋贺铮, 于鸿彬. 新型飞机牵引车夹持举升机构运动学分析[J]. 起重运输机械, 2019, 527(1): 119-123. doi: 10.3969/j.issn.1001-0785.2019.01.012

    SONG H Z, YU H B. Kinematics analysis of the clamping and lifting mechanism of new aircraft tractor[J]. Hoisting and Conveying Machinery, 2019, 527(1): 119-123(in Chinese). doi: 10.3969/j.issn.1001-0785.2019.01.012
    [4] 金嘉琦, 戚基艳, 高雪, 等. 无杆式飞机牵引车夹持举升机构设计[J]. 起重运输机械, 2019, 544(18): 53-58. doi: 10.3969/j.issn.1001-0785.2019.18.026

    JIN J Q, QI J Y, GAO X, et al. Design of clamping and lifting mechanism for towbarless aircraft tractor[J]. Hoisting and Conveying Machinery, 2019, 544(18): 53-58(in Chinese). doi: 10.3969/j.issn.1001-0785.2019.18.026
    [5] XING Z W, LV Y, LI J H. Finite element analysis and structure design for chassis of aircraft towbarless tractor[J]. Advanced Materials Research, 2011, 328-330: 690-694. doi: 10.4028/www.scientific.net/AMR.328-330.690
    [6] 朱敏, 刘晖, 陈舒文. 凹坑路面条件下飞机地面牵引载荷的仿真分析[J]. 机械制造与自动化, 2014, 43(2): 94-98. doi: 10.3969/j.issn.1671-5276.2014.02.031

    ZHU M, LIU H, CHEN S W. Simulation analysis of aircraft ground traction load under pit road conditions[J]. Machine Building & Automation, 2014, 43(2): 94-98(in Chinese). doi: 10.3969/j.issn.1671-5276.2014.02.031
    [7] 解本铭, 朱俊伟, 王伟, 等. 飞机无杆牵引车多工况牵引的平顺性仿真及优化[J]. 机械设计与制造, 2020, 356(10): 1-5. doi: 10.3969/j.issn.1001-3997.2020.10.001

    XIE B M, ZHU J W, WANG W, et al. Simulation and optimization of ride comfort on multi-working for aircraft rodless tractor[J]. Machinery Design & Manufacture, 2020, 356(10): 1-5(in Chinese). doi: 10.3969/j.issn.1001-3997.2020.10.001
    [8] 沈圳, 刘晖, 母梦新. 飞机无杆牵引安全技术研究[J]. 南京航空航天大学学报, 2019, 51(6): 819-827.

    SHEN Z, LIU H, MU M X. Aircraft towbarless traction safety technology[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(6): 819-827(in Chinese).
    [9] 王能建, 周丽杰, 刘红博. 甲板上牵引车-直升机系统的稳定性控制[J]. 上海交通大学学报, 2012, 46(7): 1146-1152.

    WANG N J, ZHOU L J, LIU H B. Study on stability control for tractor-helicopter system on deck[J]. Journal of Shanghai Jiao Tong University, 2012, 46(7): 1146-1152(in Chinese).
    [10] YU M H, GONG X, FAN G W, et al. Trajectory planning and tracking for carrier aircraft-tractor system based on autonomous and cooperative movement[J]. Mathematical Problems in Engineering, 2020, 2020: 6531984.
    [11] LIU J, DONG X Z, WANG J Y, et al. A novel EPT autonomous motion control framework for an off-axle hitching tractor-trailer system with drawbar[J]. IEEE Transactions on Intelligent Vehicles, 2020, 6(2): 376-385.
    [12] JOHNSTON J S, SWENSON E D. Feasibility study of global-positioning-system-based aircraft-carrier flight-deck persistent monitoring system[J]. Journal of Aircraft, 2010, 47(5): 1624-1635. doi: 10.2514/1.C000220
    [13] 戚基艳, 金嘉琦, 付景顺. 分布式驱动舰载机无杆式牵引车的驱动防滑[J]. 兵器装备工程学报, 2020, 41(9): 210-214. doi: 10.11809/bqzbgcxb2020.09.039

    QI J Y, JIN J Q, FU J S. Acceleration slip regulation of carrier-based aircraft towbarless tractor[J]. Journal of Ordnance Equipment Engineering, 2020, 41(9): 210-214(in Chinese). doi: 10.11809/bqzbgcxb2020.09.039
    [14] 陈舒文, 刘晖, 李福海, 等. 含接触碰撞的飞机地面牵引载荷分析[J]. 哈尔滨工程大学学报, 2017, 38(11): 1794-1799. doi: 10.11990/jheu.201606075

    CHEN S W, LIU H, LI F H, et al. Research on aircraft towing load with contact-impact effects[J]. Journal of Harbin Engineering University, 2017, 38(11): 1794-1799(in Chinese). doi: 10.11990/jheu.201606075
    [15] MU M X, LIU H, CHEN D W. Analysis of effects on the load of nose landing gear by towbarless traction[C]//Proceedings of the IEEE 2nd International Conference on Civil Aviation Safety and Information Technology. Piscataway: IEEE Press, 2020: 762-768.
    [16] 李跃明, 李晓云, 柴怡君, 等. 飞机新牵引滑出方式下前起落架动响应分析[J]. 航空学报, 2022, 43(6): 526915.

    LI Y M, LI X Y, CHAI Y J, et al. Dynamic response analysis of nose landing gear in aircraft new towing and taxiing mode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526915(in Chinese).
    [17] 母梦新. 无杆牵引对民机前起落架的影响研究[D]. 南京: 南京航空航天大学, 2021: 20-21.

    MU M X. Study on the influence of rodless traction on the nose landing gear of civil aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 20-21(in Chinese).
    [18] 朱俊伟. 飞机无杆牵引车多工况牵引的动力学分析[D]. 天津: 中国民航大学, 2019: 14-19.

    ZHU J W. Dynamic analysis of aircraft towbarless tow vehicles under multi-operating conditions[D]. Tianjing: Civil Aviation University of China, 2019: 14-19(in Chinese).
    [19] 沈圳. 飞机无杆牵引安全技术研究[D]. 南京: 南京航空航天大学, 2019: 13-21.

    SHEN Z. Research on the safety technology of aircraft towbarless traction [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 13-21(in Chinese).
    [20] 朱贺, 李静菲. 无杆飞机牵引车转弯牵引工况下的制动稳定性分析[J]. 机械设计, 2020, 37(S1): 72-76.

    ZHU H , LI J F. Analysis on braking stability of towbarless towing vehicle under steering and braking[J]. Journal of Machine Design, 2020, 37(S1): 72-76(in Chinese).
    [21] LIU C S, ZHANG K, YANG L. Normal force-displacement relationship of spherical joints with clearances[J]. Journal of Computational and Nonlinear Dynamics, 2006, 1(2): 160-167. doi: 10.1115/1.2162872
    [22] ZHU H J, ZHANG B Z, LV X, et al. Optimal chassis suspension design for towbarless towing vehicle for aircraft taxiing[J]. SAE International Journal of Advances and Current Practices in Mobility, 2022, 4(4): 1445-1453. doi: 10.4271/2022-01-0291
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  100
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-31
  • 录用日期:  2023-04-07
  • 网络出版日期:  2023-04-21
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答