留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钠离子电池硬炭负极过充析钠实验研究

刘乾磊 戴丽琴 易宗琳 苏方远 孙国华 陈成猛

刘乾磊,戴丽琴,易宗琳,等. 钠离子电池硬炭负极过充析钠实验研究[J]. 北京航空航天大学学报,2025,51(8):2812-2819 doi: 10.13700/j.bh.1001-5965.2023.0051
引用本文: 刘乾磊,戴丽琴,易宗琳,等. 钠离子电池硬炭负极过充析钠实验研究[J]. 北京航空航天大学学报,2025,51(8):2812-2819 doi: 10.13700/j.bh.1001-5965.2023.0051
LIU Q L,DAI L Q,YI Z L,et al. Experimental investigation of overcharge caused sodium plating of hard carbon anodes for sodium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2812-2819 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0051
Citation: LIU Q L,DAI L Q,YI Z L,et al. Experimental investigation of overcharge caused sodium plating of hard carbon anodes for sodium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2812-2819 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0051

钠离子电池硬炭负极过充析钠实验研究

doi: 10.13700/j.bh.1001-5965.2023.0051
基金项目: 

山西省关键核心技术和共性技术研发攻关专项(2020XXX014)

详细信息
    通讯作者:

    E-mail:ccm@sxicc.ac.cn

  • 中图分类号: V221+.3;TB553

Experimental investigation of overcharge caused sodium plating of hard carbon anodes for sodium-ion batteries

Funds: 

Research and Development Project of Key Core and Common Technology of Shanxi Province (2020XXX014)

More Information
  • 摘要:

    钠离子电池是临近空间飞行器二次电池的有力候选者。关于硬炭负极析钠的监测、失效及析钠机制分析对钠离子电池的管理和使用具有指导意义,但该方面研究较少。对此,通过设置一系列的析钠梯度,利用微分容量曲线,结合扫描电子显微镜(SEM)、恒电流间歇滴定(GITT)等方法对负极析钠行为进行研究。结果表明:在20 mA/g电流密度下放电12.5 h,硬炭表面形成钠团簇,继续钠化2.5 h,钠团簇转变为钠金属,同时,钠金属的脱钠电位可以被微分容量曲线监测;由于钠团簇的脱钠能垒较低,不影响电池循环性能;钠金属块使电池界面阻抗和电荷转移阻抗进一步增加,导致循环容量加速衰减。

     

  • 图 1  商用硬炭的结构表征

    Figure 1.  Structure characterization of commercial hard carbons

    图 2  20 mA/g电流密度下V-0至C-400的电压-时间和dQ/dV曲线

    Figure 2.  Potential-time and dQ/dV curves at 20 mA/g from V-0 to C-400

    图 3  20 mA/g电流密度下,初始电极和钠化至V-0、C-300、C-350、C-400电极的扫描电镜图像

    Figure 3.  SEM images of pristine, V-0, C-300, C-350 and C-400 at the discharge process at 20 mA/g

    图 4  20 mA/g电流密度下V-0.001至C-400的循环性能

    Figure 4.  Cycles performance at 20 mA/g from V-0.001 to C-400

    图 5  20 mA/g电流密度下经10、30、60次循环后,V-0和C-400的电压-时间和dQ/dV曲线

    Figure 5.  Potential-time and dQ/dV curves of V-0 and C-400 at 20 mA/g after 10, 30 and 60 cycles

    图 6  钠化过程中的GITT曲线

    Figure 6.  GITT curves during the sodiation process

    图 7  不同钠化深度电池的EIS

    Figure 7.  EIS of batteries with different sodiation depths

    图 8  Na原子、Na4、Na10团簇与炭材料基底结合后的构型及其形成能

    Figure 8.  Configurations of Na atoms, Na4, and Na10 clusters and their formation energies after binding to the carbon material substrate

    表  1  商用硬炭的结构参数

    Table  1.   Structure parameters of commercial hard carbons

    商业硬炭 赝石墨域的
    层间距/nm
    拉曼光谱D峰和
    G峰的相对强度比
    比表面积/
    (m2·g−1)
    孔体积/
    (cm3·g−1)
    可乐丽 3. 8 1. 10 4.56 0. 011 6
    下载: 导出CSV
  • [1] KRAUSE F C, RUIZ J P, JONES S C, et al. Performance of commercial Li-ion cells for future NASA missions and aerospace applications[J]. Journal of the Electrochemical Society, 2021, 168(4): 040504. doi: 10.1149/1945-7111/abf05f
    [2] 于海江. 共绘钠离子电池“新蓝图”[N]. 中国电力报, 2022-09-15(005).

    YU H J. Co-creating a new vision for sodium-ion batteries[N]. Chinese Electric Power News, 2022-09-15(005)(in Chinese).
    [3] WANG Y Y, HOU B H, GUO J Z, et al. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage[J]. Advanced Energy Materials, 2018, 8(18): 1703252. doi: 10.1002/aenm.201703252
    [4] XIA Y, QUE L F, YU F D, et al. Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature[J]. Nano-Micro Letters, 2022, 14(1): 143. doi: 10.1007/s40820-022-00885-7
    [5] LI Z, ZHANG Y, ZHANG J H, et al. Sodium-ion battery with a wide operation-temperature range from −70 to 100℃[J]. Angewandte Chemie International Edition, 2022, 61(13): e202116930. doi: 10.1002/anie.202116930
    [6] HU Y Y, WU X W, WEN Z Y, et al. Challenges and thoughts on the development of sodium battery technology for energy storage[J]. Chinese Journal of Engineering Science, 2021, 23(5): 94. doi: 10.15302/J-SSCAE-2021.05.013
    [7] GARCHE J, DYER C K, MOSELEY P T, et al. Preface[M]//JÜRGEN G. Encyclopedia of electrochemical power sources. Amsterdam: Elsevier, 2009.
    [8] ZHANG G X, WEI X Z, CHEN S Q, et al. Comprehensive investigation of a slight overcharge on degradation and thermal runaway behavior of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 35054-35068.
    [9] CAI W L, YAN C, YAO Y X, et al. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries[J]. Angewandte Chemie International Edition, 2021, 60(23): 13007-13012. doi: 10.1002/anie.202102593
    [10] XU L, XIAO Y, YANG Y, et al. operando quantified lithium plating determination enabled by dynamic capacitance measurement in working Li-ion batteries[J]. Angewandte Chemie (International Edition), 2022, 61(39): e202210365. doi: 10.1002/anie.202210365
    [11] 张青松, 罗星娜, 程相静, 等. 基于锂离子电池温降指数的细水雾添加剂筛选方法[J]. 北京航空航天大学学报, 2020, 46(6): 1073-1079.

    ZHANG Q S, LUO X N, CHENG X J, et al. Method for screening fine water mist additive based on temperature drop index of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1073-1079(in Chinese).
    [12] MORIKAWA Y, NISHIMURA S I, HASHIMOTO R I, et al. Mechanism of sodium storage in hard carbon: an X-ray scattering analysis[J]. Advanced Energy Materials, 2020, 10(3): 1903176. doi: 10.1002/aenm.201903176
    [13] CHEN Y X, CHEN K H, SANCHEZ A J, et al. Operando video microscopy of Li plating and re-intercalation on graphite anodes during fast charging[J]. Journal of Materials Chemistry A, 2021, 9(41): 23522-23536. doi: 10.1039/D1TA06023F
    [14] YOUN Y, GAO B, KAMIYAMA A, et al. Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery[J]. NPJ Computational Materials, 2021, 7: 48. doi: 10.1038/s41524-021-00515-7
    [15] FINEGAN D P, QUINN A, WRAGG D S, et al. Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes[J]. Energy & Environmental Science, 2020, 13(8): 2570-2584.
    [16] GAO T, HAN Y, FRAGGEDAKIS D, et al. Interplay of lithium intercalation and plating on a single graphite particle[J]. Joule, 2021, 5(2): 393-414. doi: 10.1016/j.joule.2020.12.020
    [17] ALVIN S, CAHYADI H S, HWANG J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials, 2020, 10(20): 2000283. doi: 10.1002/aenm.202000283
    [18] DESAI P, ABOU-RJEILY J, TARASCON J M, et al. Practicality of methyl acetate as a co-solvent for fast charging Na-ion battery electrolytes[J]. Electrochimica Acta, 2022, 416: 140217. doi: 10.1016/j.electacta.2022.140217
    [19] LIN X K, KHOSRAVINIA K, HU X S, et al. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries[J]. Progress in Energy and Combustion Science, 2021, 87: 100953. doi: 10.1016/j.pecs.2021.100953
    [20] CHU F L, HU J L, TIAN J, et al. In situ plating of porous Mg network layer to reinforce anode dendrite suppression in Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12678-12689.
    [21] LU Y Y, ZHANG Q, HAN M, et al. Stable Na plating/stripping electrochemistry realized by a 3D Cu current collector with thin nanowires[J]. Chemical Communications, 2017, 53(96): 12910-12913. doi: 10.1039/C7CC07485A
    [22] DONG R Q, ZHENG L M, BAI Y, et al. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes[J]. Advanced Materials, 2021, 33(36): e2008810. doi: 10.1002/adma.202008810
    [23] SONG M X, YI Z L, XU R, et al. Towards enhanced sodium storage of hard carbon anodes: regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Materials, 2022, 51: 620-629. doi: 10.1016/j.ensm.2022.07.005
    [24] JAYAWARDANA W, CARR C L, ZHAO D X, et al. Voltage-relaxation GITT and reverse Monte Carlo to determine lithium diffusion and distribution in TiO2 and highly-ordered nanoporous hard carbons[J]. Journal of the Electrochemical Society, 2018, 165(11): A2824-A2832. doi: 10.1149/2.1121811jes
    [25] XIE F, XU Z, GUO Z Y, et al. Disordered carbon anodes for Na-ion batteries: quo vadis?[J]. Science China Chemistry, 2021, 64(10): 1679-1692. doi: 10.1007/s11426-021-1074-8
    [26] CAI C C, CHEN Y A, HU P, et al. Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage[J]. Small, 2022, 18(6): e2105303. doi: 10.1002/smll.202105303
    [27] MEI W X, JIANG L H, LIANG C, et al. Understanding of Li-plating on graphite electrode: detection, quantification and mechanism revelation[J]. Energy Storage Materials, 2021, 41: 209-221. doi: 10.1016/j.ensm.2021.06.013
    [28] ZHANG S M, YANG G J, LIU S, et al. Understanding the dropping of lithium plating potential in carbonate electrolyte[J]. Nano Energy, 2020, 70: 104486. doi: 10.1016/j.nanoen.2020.104486
    [29] XU L, YANG Y, XIAO Y, et al. In-situ determination of onset lithium plating for safe Li-ion batteries[J]. Journal of Energy Chemistry, 2022, 67: 255-262. doi: 10.1016/j.jechem.2021.10.016
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1088
  • HTML全文浏览量:  202
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 录用日期:  2023-04-20
  • 网络出版日期:  2023-05-10
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答