留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固化应力松弛对复材模具型面精度的影响

肖遥 李勇 李东升 王磊 江超

向锦武, 曾开春, 聂璐等 . 考虑弹性影响的乘波体飞行动力学特性[J]. 北京航空航天大学学报, 2012, 38(10): 1306-1310.
引用本文: 肖遥,李勇,李东升,等. 固化应力松弛对复材模具型面精度的影响[J]. 北京航空航天大学学报,2025,51(3):824-832 doi: 10.13700/j.bh.1001-5965.2023.0109
Xiang Jinwu, Zeng Kaichun, Nie Luet al. Elastic effects on flight mechanics of waverider[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1306-1310. (in Chinese)
Citation: XIAO Y,LI Y,LI D S,et al. Influence of curing stress relaxation on profile accuracy of composites tools[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):824-832 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0109

固化应力松弛对复材模具型面精度的影响

doi: 10.13700/j.bh.1001-5965.2023.0109
基金项目: 中央高校基本科研业务费专项资金(YWF-23-L-1012)
详细信息
    通讯作者:

    E-mail:lidongs@buaa.edu.cn

  • 中图分类号: V262.3;V258+.3

Influence of curing stress relaxation on profile accuracy of composites tools

Funds: The Fundamental Research Funds for the Central Universities (YWF-23-L-1012)
More Information
  • 摘要:

    具有低温固化高温使用特点的复合材料工装预浸料,是制造航空航天高精度复合材料成型工装极具潜力的材料之一。为实现其低成本、高精度成型,模具用预浸料一般采用更为复杂的低温预固化和高温后固化组成的2步工艺。模具成型固化应力不仅影响模具初始型面精度,而且在模具热循环使用过程中还可能产生应力松弛,进一步引起模具型面精度变化,进而影响零件成型精度。本文针对碳纤维增强复合材料模具凹凸复杂型面特征,通过试验研究了固化成型阶段和热循环使用过程中模具型面精度变化规律及影响因素。试验结果表明:成型阶段的固化应力及其在使用过程中的应力松弛行为是造成模具型面精度变化的主要因素,且型面偏差随热循环使用周期的增加而逐渐趋于稳定;成型阶段,模具型面偏差主要来源于由热膨胀不匹配、树脂固化收缩及金属母模作用诱导的固化应力,而使用阶段,固化残余应力的松弛行为是引起模具型面偏差的主要原因。研究结果能够帮助理解复合材料模具结构稳定性变化,同时,对于降低复合材料模具制造成本、提高使用寿命,实现复杂高精度复合材料构件的精确制造具有重要意义。

     

  • 图 1  试验件制备与测量过程

    Figure 1.  Manufacturing and measuring flowchart of tool composites part

    图 2  固化温度的热电偶测试结果

    Figure 2.  Results of curing temperature measured by thermocouple

    图 3  随炉试样的单向拉伸试验结果

    Figure 3.  Results of unidirectional tensile test specimens

    图 4  预固化阶段的型面偏差

    Figure 4.  Profile deviation in pre-cure step

    图 5  后固化阶段的型面偏差

    Figure 5.  Profile deviation in post-cure step

    图 6  后固化阶段的累积型面偏差

    Figure 6.  Accumulated profile deviation in post-cure step

    图 7  后固化阶段的型面偏差雷达图

    Figure 7.  Radar map of profile deviation in post-cure

    图 8  01号和02号试验件的变形云图

    Figure 8.  Cloud chart of deformation of No. 01 and No. 02 specimens in pre-cure and post-cure

    图 9  4次固化后的01号试验件型面偏差

    Figure 9.  Profile deviation of No. 01 specimen after four times cure steps

    图 10  01号试验件型面偏差云图对比

    Figure 10.  Comparison of profile deviation of No. 01 specimen

    表  1  复合材料工装预浸料基本力学性能

    Table  1.   Basic mechanical properties of tooling composite material prepreg

    牌号 轴向弹性模量/GPa 面内剪切模量/GPa 面内泊松比
    XT-200 56 3.66 0.04
    XT-650 59.5 4.35 0.08
    下载: 导出CSV
  • [1] HASSAN M H, OTHMAN A R, KAMARUDDIN S. A review on the manufacturing defects of complex-shaped laminate in aircraft composite structures[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9): 4081-4094.
    [2] 刘振东, 郑锡涛, 范雯静, 等. 固化残余应力对无人机复合材料机翼强度的影响[J]. 航空学报, 2022, 43(6): 526117.

    LIU Z D, ZHENG X T, FAN W J, et al. Effect of process-induced residual stress on strength of UAV composite wing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526117(in Chinese).
    [3] LIAN J Y, XU Z B, RUAN X D. Analysis and control of cured deformation of fiber-reinforced thermosetting composites: a review[J]. Journal of Zhejiang University: Science A, 2019, 20(5): 311-333. doi: 10.1631/jzus.A1800565
    [4] 岳广全, 张博明, 戴福洪, 等. 固化过程中模具与复合材料构件相互作用分析[J]. 复合材料学报, 2010, 27(6): 167-171.

    YUE G Q, ZHANG B M, DAI F H, et al. Interaction between mold and composite parts during curing process[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 167-171(in Chinese).
    [5] YANG Q D, WEI K, YANG X J, et al. Microstructures and unique low thermal expansion of Invar 36 alloy fabricated by selective laser melting[J]. Materials Characterization, 2020, 166: 110409. doi: 10.1016/j.matchar.2020.110409
    [6] GRANKÄLL T, HALLANDER P, PETERSSON M, et al. The true shape of composite cure tools[J]. Journal of Manufacturing Processes, 2020, 59: 279-286. doi: 10.1016/j.jmapro.2020.08.052
    [7] 肖遥, 李东升, 吉康, 等. 大型复合材料航空件固化成型模具技术研究与应用进展[J]. 复合材料学报, 2022, 39(3): 907-925.

    XIAO Y, LI D S, JI K, et al. Research and application progress of curing tooling technology for large composite aeronautical components[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 907-925(in Chinese).
    [8] 魏灵航, 安鲁陵, 鲍益东, 等. 基于响应面的框架式复材成型模具轻量化设计[J]. 南京航空航天大学学报, 2020, 52(3): 422-429.

    WEI L H, AN L L, BAO Y D, et al. Lightweight design of frame molding die for composite materials based on response surface[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(3): 422-429(in Chinese).
    [9] ZHANG G M, WANG J H, NI A Q, et al. Process-induced deformation of L-shaped variable-stiffness composite structures during cure[J]. Composite Structures, 2019, 230: 111461. doi: 10.1016/j.compstruct.2019.111461
    [10] 王乾, 关志东, 王仁宇, 等. 结构参数对复合材料V型构件固化变形影响试验及解析分析[J]. 复合材料学报, 2017, 34(12): 2722-2733.

    WANG Q, GUAN Z D, WANG R Y, et al. Experimental and analytic analysis of the structure parameters on process-induced distortions of V-shaped composite parts[J]. Acta Materiae Compositae Sinica, 2017, 34(12): 2722-2733(in Chinese).
    [11] KAPPEL E. Forced-interaction and spring-in–relevant initiators of process-induced distortions in composite manufacturing[J]. Composite Structures, 2016, 140: 217-229. doi: 10.1016/j.compstruct.2016.01.016
    [12] 贾丽杰, 叶金蕊, 刘卫平, 等. 结构因素对复合材料典型结构件固化变形影响[J]. 复合材料学报, 2013, 30(S1): 261-265.

    JIA L J, YE J R, LIU W P, et al. Influence of structural factor on curing deformation of typical composite structural part[J]. Acta Materiae Compositae Sinica, 2013, 30(S1): 261-265 (in Chinese).
    [13] FIORINA M, SEMAN A, CASTANIE B, et al. Spring-in prediction for carbon/epoxy aerospace composite structure[J]. Composite Structures, 2017, 168: 739-745. doi: 10.1016/j.compstruct.2017.02.074
    [14] DONG C S. Process-induced deformation of composite T-stiffener structures[J]. Composite Structures, 2010, 92(7): 1614-1619. doi: 10.1016/j.compstruct.2009.11.026
    [15] 王雪明, 谢富原. 碳纤维/双马树脂复合材料整体成型过程分层扩展行为实验研究[J]. 航空学报, 2021, 42(2): 424918.

    WANG X M, XIE F Y. Experimental study on behavior of delamination propagation of carbon fiber/bismaleimide composites during integral forming process[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 424918(in Chinese).
    [16] 杨晓波, 湛利华, 蒋成标, 等. 模具材料对复合材料制件固化过程应变的影响分析[J]. 南京航空航天大学学报, 2018, 50(1): 24-29.

    YANG X B, ZHAN L H, JIANG C B, et al. Influence of mould materials on curing process and deformation of composite part[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(1): 24-29(in Chinese).
    [17] LIU X D, GUAN Z D, WANG X D, et al. Study on cure-induced residual stresses and spring-in deformation of L-shaped composite laminates using a simplified constitutive model considering stress relaxation[J]. Composite Structures, 2021, 272: 114203. doi: 10.1016/j.compstruct.2021.114203
    [18] BENAVENTE M, MARCIN L, COURTOIS A, et al. Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 205-216. doi: 10.1016/j.compositesa.2018.01.005
    [19] BENAVENTE M, MARCIN L, COURTOIS A, et al. Viscoelastic distortion in asymmetric plates during post curing[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 122-130. doi: 10.1016/j.compositesa.2017.09.017
    [20] HU H X, LI S X, WANG J H, et al. Monitoring the gelation and effective chemical shrinkage of composite curing process with a novel FBG approach[J]. Composite Structures, 2017, 176: 187-194. doi: 10.1016/j.compstruct.2017.04.051
    [21] GARSTKA T, ERSOY N, POTTER K D, et al. In situ measurements of through-the-thickness strains during processing of AS4/8552 composite[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(12): 2517-2526. doi: 10.1016/j.compositesa.2007.07.018
    [22] SHAH D B, PATEL K M, PATEL A I, et al. Experimental investigation on spring-back deformation during autoclave curing of parabolic antenna reflectors[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 134-146. doi: 10.1016/j.compositesa.2018.09.017
    [23] FERNLUND G, POURSARTIP A, TWIGG G, et al. Residual stress, spring-in and warpage in autoclaved composite parts[C]// International Conference on Composite Materials. Vancouver: University of British Columbia, 2003: 1-10.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 录用日期:  2023-07-07
  • 网络出版日期:  2023-09-22
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答