Time uncertainty analysis on cyclic operation procedures of carrier aircraft based on MC-GERT
-
摘要:
舰载机出动回收作业完成时间通常呈现较大的不确定性,直接影响航母任务规划人员对舰载机后续任务方案的制定。为确定舰载机出动回收作业流程完成时间的分布规律,辅助规划人员掌控舰载机任务执行进度,提出舰载机出动回收作业流程时间不确定性分析方法。基于舰载机出动回收作业流程,建立舰载机出动回收作业流程随机网络模型;提出以Laplace变换为传递函数的图示评审技术网络,对其传递函数特性进行研究,证明了舰载机出动回收作业流程随机网络模型可以运用信号流图理论进行求解,并引入蒙特卡罗方法用于求解随机网络中带有“与”型节点关系的并联支路简化及提升网络求解的运算效率。基于结合蒙特卡罗的图示评审技术(MC-GERT)方法,分别对舰载机飞行前准备作业、出动离场作业、波次出动离场作业及循环作业模式下的周期作业的完成时间的分布特性进行分析,验证了所提方法的可行性,表明该方法能够应用于对舰载机出动回收作业规划方案进行在线分析,为舰载机作业规划相关部门提供一定的方案执行预期。
Abstract:The completion time of the cyclic operation of carrier aircraft usually presents significant uncertainty, which directly affects the development of subsequent mission plans for carrier aircraft by carrier mission planners. To determine the distribution pattern of the completion time of the cyclic operation of carrier aircraft and assist planners in tracking the progress of carrier aircraft mission execution, the time uncertainty analysis method for cyclic operations of carrier aircraft was proposed. Firstly, based on the operation process from dispatching to recycling, the stochastic network model of the cyclic operation of carrier aircraft was established. Secondly, a graphic evaluation and review technique network with Laplace transform as the transfer function was proposed, and the characteristics of its transfer function were studied. It was proven that the stochastic netw ork model of the cyclic operation of carrier aircraft could be solved by utilizing the signal flow graph theory. In addition, the Monte Carlo graphical evaluation and review technique(MC-GERT) method was introduced to simplify the parallel branches with the “AND” relationship in the stochastic network and improve the calculation efficiency of the network solution. By the proposed graphic evaluation and review technique method combined with Monte Carlo, finally, the distribution characteristics of the completion time of the pre-flight preparations, sortie and departure, single wave departure operation, and the periodic operation under the cyclic mode of carrier aircraft were analyzed respectively, which verified the feasibility of the proposed analysis method. The results show that the proposed method can be applied to the online analysis of the planning scheme of the cyclic operation of carrier aircraft and can provide certain scheme implementation expectations for relevant departments of carrier aircraft operation planning.
-
Key words:
- carrier aircraft /
- cyclic operation /
- MC-GERT /
- Laplace transform /
- Monte Carlo /
- uncertainty analysis
-
表 1 GERT网络节点类别
Table 1. Taxonomy of nodes in GERT network
输出端 输入端 “异或”型 “或”型 “与”型 概率型 肯定型 表 2 舰载机出动回收流程作业数据
Table 2. Data of cyclic operations of carrier aircraft
作业
编号作业名称 概率 作业完成时间分布 ① 牵引入位 1 112[(u2−t6)(8.5−t)] ② 系留 1 2 ③ 机械检查 1 12(4u6−u4)(8−t) ④ 充氧 1 (u4−u2)(t−4)+(u2−u6)(6−1) ⑤ 充氮 0.5 (u4−u2)(t−4)+(u2−u6)(6−1) ⑥ 0.5 0 ⑦ 维修 0.1 114(u6−zt0) ⑧ 0.9 0 ⑨ 加油 1 150[(z20−z20)(t−20)] ⑩ 挂载 1 14(t10−t21)(t−19) ⑪ 惯导对准 1 (u4−u0) ⑫ 暖机自检 1 2 ⑬ 更换备份机 0.03 (μ1−μ2) ⑭ 滑行入位 0.97 12(u1−t4) ⑮ 准备位等待 1 (u0.3−u0.8)(8t−2.4) ⑯ 离场 1 0.2 ⑰ 编队空中作业 1 N(120,6) ⑱ 编队着舰作业 1 118(u6−uti)(12−t) ⑲ 编队战损维修 0.3 (u15−u20)(t−15)/50+(u20−u35)(35−t)/150 ⑳ 0.7 0 ㉑ 编队飞行前准备作业 1 ㉒ 编队出动离场 1 表 3 波次1两周期作业完成时间分布特性
Table 3. Distribution characteristics of completion time for completing two cyclic operations within wave 1
战损概率 均值/min 标准差/min 峰度 偏度 0.0 538 22.08 1.87 0.59 0.1 543 26.22 1.43 0.79 0.2 548 19.14 0.71 0.7 0.3 553 31.1 0.24 0.56 0.4 557 32.28 −0.01 0.41 0.5 562 32.78 −0.13 0.26 0.6 567 32.38 −0.06 0.13 -
[1] 罗湘勇, 冯浩源, 潘星, 等. 面向流程的保障体系集成建模方法研究[J]. 系统工程与电子技术, 2013, 35(11): 2314-2319.LUO X Y, FENG H Y, PAN X, et al. Integration modeling approach of process oriented support system of systems[J]. Systems Engineering and Electronics, 2013, 35(11): 2314-2319(in Chinese). [2] 冯浩源, 吕卫民, 江式伟. 基于时间Petri网和模拟退火算法的单机机务准备流程优化[J]. 兵工自动化, 2013, 32(3): 90-93. doi: 10.7690/bgzdh.2013.03.027FENG H Y, LYU W M, JIANG S W. Task ready process optimization of single airplane based on timed petri net and simulated annealing algorithm[J]. Ordnance Industry Automation, 2013, 32(3): 90-93(in Chinese). doi: 10.7690/bgzdh.2013.03.027 [3] 韩维, 苏析超, 陈俊锋. 舰载机多机一体化机务保障调度方法[J]. 系统工程与电子技术, 2015, 37(4): 809-816.HAN W, SU X C, CHEN J F. Integrated maintenance support scheduling method of multi-carrier aircrafts[J]. Systems Engineering and Electronics, 2015, 37(4): 809-816(in Chinese). [4] 韩庆田, 曹文静, 张毅. 舰载机机务保障资源配置研究[J]. 价值工程, 2012, 31(31): 311-312. doi: 10.3969/j.issn.1006-4311.2012.31.155HAN Q T, CAO W J, ZHANG Y. Research on resource distribution of maintenance support for carrier aircraft[J]. Value Engineering, 2012, 31(31): 311-312(in Chinese). doi: 10.3969/j.issn.1006-4311.2012.31.155 [5] 苏析超, 韩维, 萧卫, 等. 基于Memetic算法的舰载机舰面一站式保障调度[J]. 系统工程与电子技术, 2016, 38(10): 2303-2309.SU X C, HAN W, XIAO W, et al. Pit-stop support scheduling on deck of carrier plane based on Memetic algorithm[J]. Systems Engineering and Electronics, 2016, 38(10): 2303-2309(in Chinese). [6] CUI R W, HAN W, SU X C, et al. A multi-objective hyper heuristic framework for integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration[J]. Aerospace Science and Technology, 2020, 107: 106346. doi: 10.1016/j.ast.2020.106346 [7] CUI R W, HAN W, SU X C, et al. A dual population multi-operator genetic algorithm for flight deck operations scheduling problem[J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 331-346. doi: 10.23919/JSEE.2021.000028 [8] 崔荣伟, 韩维, 苏析超, 等. 舰载机甲板机务勤务保障作业调度与资源配置集成优化[J]. 系统工程与电子技术, 2021, 43(7): 1884-1893.CUI R W, HAN W, SU X C, et al. Integrated optimization of carrier based aircraft flight deck operations scheduling and resource configuration for pre-flight preparation stage[J]. Systems Engineering and Electronics, 2021, 43(7): 1884-1893(in Chinese). [9] 苏析超, 韩维, 张勇, 等. 考虑人机匹配模式的舰载机甲板机务勤务保障调度算法[J]. 航空学报, 2018, 39(12): 214-232.SU X C, HAN W, ZHANG Y, et al. Scheduling algorithm for maintenance and service support of carrier-based aircraft on flight deck with different man-aircraft matching patterns[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 214-232(in Chinese). [10] 韩维, 崔荣伟, 苏析超, 等. 基于双种群模糊引力搜索算法的舰载机甲板作业调度[J]. 控制与决策, 2021, 36(11): 2751-2759.HAN W, CUI R W, SU X C, et al. Flight deck operations scheduling based on dual population fuzzy gravitational search algorithm[J]. Control and Decision, 2021, 36(11): 2751-2759(in Chinese). [11] HAN W, GUO F, SU X C. A reinforcement learning method for a hybrid flow-shop scheduling problem[J]. Algorithms, 2019, 12(11): 222. doi: 10.3390/a12110222 [12] YU L F, ZHU C, SHI J M, et al. An extended flexible job shop scheduling model for flight deck scheduling with priority, parallel operations, and sequence flexibility[J]. Scientific Programming, 2017, 2017: 2463252. [13] JIANG T T, SU X C, HAN W. Optimization of support scheduling on deck of carrier aircraft based on improved differential evolution algorithm[C]//Proceedings of the 3rd IEEE International Conference on Control Science and Systems Engineering. Piscataway: IEEE Press, 2017: 136-140. [14] 苏析超, 伍恒, 崔荣伟, 等. 基于边际-人工蜂群算法的舰载机机群出动保障人员配置-调度联合优化方法[J]. 北京航空航天大学学报, 2020, 46(11): 2056-2068.SU X C, WU H, CUI R W, et al. Joint optimization method for carrier-based aircraft fleet sortie support personnel configuration and scheduling based on marginal-ABC algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2056-2068(in Chinese). [15] 万兵, 苏析超, 郭放, 等. 不确定性工时下甲板作业的前摄性鲁棒调度[J]. 航空学报, 2022, 43(12): 379-396.WAN B, SU X C, GUO F, et al. Proactive robust scheduling of aircraft carrier flight deck operations with uncertain activity durations[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 379-396(in Chinese). [16] SU X C, HAN W, WU Y, et al. A proactive robust scheduling method for aircraft carrier flight deck operations with stochastic durations[J]. Complexity, 2018, 2018(1): 1-38. [17] SU X C, HAN W, WU Y, et al. A robust scheduling optimization method for flight deck operations of aircraft carrier with ternary interval durations[J]. IEEE Access, 2018, 6: 69918-69936. doi: 10.1109/ACCESS.2018.2879503 [18] 冯强, 曾声奎, 康锐. 基于MAS的舰载机动态调度模型[J]. 航空学报, 2009, 30(11): 2119-2125.FENG Q, ZENG S K, KANG R. A MAS-based model for dynamic scheduling of carrier aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11): 2119-2125(in Chinese). [19] 范加利, 孟杨凯, 黄葵, 等. 基于禁忌算法的舰载机甲板作业动态调度优化算法[J]. 系统工程与电子技术, 2023, 45(10): 3172-3182.FAN J L, MENG Y K, HUANG K. Aircraft deck operations dynamic scheduling optimization algorithm based on the tabu algorithm[J]. Systems Engineering and Electronics, 2023, 45(10): 3172-3182(in Chinese). [20] YUAN P L, HAN W, SU X C, et al. A dynamic scheduling method for carrier aircraft support operation under uncertain conditions based on rolling horizon strategy[J]. Applied Sciences, 2018, 8(9): 1546. doi: 10.3390/app8091546 [21] WANG X W, LIU J, SU X C, et al. A review on carrier aircraft dispatch path planning and control on deck[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3039-3057. doi: 10.1016/j.cja.2020.06.020 [22] CUI J P, WU Y, SU X C, et al. A task allocation model for a team of aircraft launching on the carrier[J]. Mathematical Problems in Engineering, 2018, 2018: 7920806. [23] LIU J, HAN W, LI J, et al. Integration design of sortie scheduling for carrier aircrafts based on hybrid flexible flowshop[J]. IEEE Systems Journal, 2020, 14(1): 1503-1511. doi: 10.1109/JSYST.2019.2922261 [24] LIU J, HAN W, WANG X W, et al. Research on cooperative trajectory planning and tracking problem for multiple carrier aircraft on the deck[J]. IEEE Systems Journal, 2020, 14(2): 3027-3038. doi: 10.1109/JSYST.2019.2932783 [25] 万兵, 韩维, 梁勇, 等. 舰载机出动离场调度优化算法[J]. 系统工程与电子技术, 2021, 43(12): 3624-3634.WAN B, HAN W, LIANG Y, et al. Optimization algorithm of carrier-based aircraft sortie departure scheduling[J]. Systems Engineering and Electronics, 2021, 43(12): 3624-3634(in Chinese). [26] WU Y, SUN L G, QU X J. A sequencing model for a team of aircraft landing on the carrier[J]. Aerospace Science and Technology, 2016, 54(7): 72-87. [27] 刘玉杰, 万兵, 苏析超, 等. 基于IABC算法的舰载机着舰调度[J]. 控制与决策, 2022, 37(7): 1810-1818.LIU Y J, WAN B, SU X C, et al. Scheduling of landing for carrier-based aircraft based on improved artificial bee colony algorithm[J]. Control and Decision, 2022, 37(7): 1810-1818(in Chinese). [28] 刘玉杰, 韩维, 苏析超, 等. 基于改进灰狼优化算法的舰载机着舰调度[J]. 北京航空航天大学学报, 2024, 50(3): 803-813.LIU Y J, HAN W, SU X C, et al. Research on carrier aircraft landing scheduling problem based on improved gray wolf optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(3): 803-813(in Chinese). [29] 夏宏青, 焦健, 褚嘉运, 等. 基于改进GERT的任务过程时间特性建模分析方法[J]. 北京航空航天大学学报, 2020, 46(11): 2140-2148.XIA H Q, JIAO J, CHU J Y, et al. Improved GERT based time characteristic modeling and analysis method for task process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2140-2148(in Chinese). [30] 吴勇, 潘星, 康锐, 等. 基于图示评审技术的舰载机航空保障时间分析[J]. 兵工学报, 2013, 34(12): 1611-1615. doi: 10.3969/j.issn.1000-1093.2013.12.018WU Y, PAN X, KANG R, et al. Aircraft support process time analysis based on graphic evaluation and review technique[J]. Acta Armamentarii, 2013, 34(12): 1611-1615(in Chinese). doi: 10.3969/j.issn.1000-1093.2013.12.018 [31] JEWELL A. Sortie generation capacity of embarked airwings[R]. Washington, D. C. : Center For Naval Analyses Alexandria Va, 1998. [32] PRITSKER A A B, HAPP W W. GERT: graphical evaluation and review technique, part I. Fundamentals[J]. Journal of Industrial Engineering, 1966, 17(5): 267-274. [33] GHAELI M R, SADI-NEZHAD S. Recent advances on graphical evaluation and review techniques[J]. Journal of Project Management, 2017, 2(3): 107-112. doi: 10.5267/j.jpm.2017.7.001 [34] ELMAGHRABY S E. An algebra for the analysis of generalized activity networks[J]. Management Science, 1964, 10(3): 494-514. doi: 10.1287/mnsc.10.3.494 [35] TAO L Y, WU D S, LIU S F, et al. Schedule risk analysis for new-product development: the GERT method extended by a characteristic function[J]. Reliability Engineering & System Safety, 2017, 167: 464-473. [36] SCHIFF J L. The Laplace transform: theory and applications[M]. Berlin: Springer, 1999: 16-17. [37] MARTÍNEZ LEÓN H C, FARRIS J A, LETENS G, et al. An analytical management framework for new product development processes featuring uncertain iterations[J]. Journal of Engineering and Technology Management, 2013, 30(1): 45-71. doi: 10.1016/j.jengtecman.2012.11.004 [38] 陶良彦, 刘思峰, 方志耕, 等. 以特征函数为传递参数的CF-GERT及其矩阵法求解[J]. 系统工程理论与实践, 2018, 38(2): 509-521.TAO L Y, LIU S F, FANG Z G, et al. CF-GERT model conveying characteristic function and its matrix solution[J]. Systems Engineering-Theory & Practice, 2018, 38(2): 509-521(in Chinese). [39] 周琛, 尚柏林, 宋笔锋, 等. 基于作战环的航空武器装备体系贡献率评估[J]. 航空学报, 2022, 43(2): 309-320. doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202025ZHOU C, SHANG B L, SONG B F, et al. Contribution evaluation of aviation armament system-of-systems based on operation loop[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 309-320(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202025 -