留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丝网印刷石墨烯标签天线的不确定性分析

李凯 沈志刚 张晓静

洪杰, 王虹, 马艳红等 . 气膜密封阻尼结构的气膜稳态特性分析[J]. 北京航空航天大学学报, 2011, 37(1): 6-9,35.
引用本文: 李凯,沈志刚,张晓静. 丝网印刷石墨烯标签天线的不确定性分析[J]. 北京航空航天大学学报,2025,51(3):857-864 doi: 10.13700/j.bh.1001-5965.2023.0159
Hong Jie, Wang Hong, Ma Yanhonget al. Analysis on gas film stability performance of gas film seal damper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1): 6-9,35. (in Chinese)
Citation: LI K,SHEN Z G,ZHANG X J. Study on uncertainties of graphene tag antenna by screen printing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):857-864 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0159

丝网印刷石墨烯标签天线的不确定性分析

doi: 10.13700/j.bh.1001-5965.2023.0159
基金项目: 中央高校基本科研业务费专项资金(YWF-22-L-1219)
详细信息
    通讯作者:

    E-mail:zhangxiaojing@buaa.edu.cn

  • 中图分类号: V214;TB12

Study on uncertainties of graphene tag antenna by screen printing

Funds: The Fundamental Research Funds for the Central Universities (YWF-22-L-1219)
More Information
  • 摘要:

    石墨烯标签天线因具有价格低廉和环境友好的优势而有望替代金属标签天线。然而,石墨烯标签天线在制备过程中受到丝网印刷工艺和石墨烯油墨的影响,不可避免地引入不确定性,使得实际阅读距离与理论值不符。为指导包含不确定性的石墨烯标签天线的设计,使天线阅读距离处于特定范围内,提出一种基于区间分析的算法。通过分析天线理论公式,得到不确定性参数;根据制备经验,为每个不确定性参数估计区间范围,使用区间分析算法(包括区间数学建模和顶点法)计算阅读距离的上下限;通过实验测量了石墨烯标签天线的阅读距离,验证了所提算法。结果表明:所提算法可以有效地计算石墨烯标签天线的阅读距离区间,有助于石墨烯标签天线的实际使用,并为制造过程中的不确定性分析提供指导。

     

  • 图 1  3种偶极天线示意图

    Figure 1.  Illustration of three types of dipole antennas

    图 2  石墨烯弯折偶极子天线横截面的SEM图像

    Figure 2.  Cross-section SEM images of graphene meandered-line dipole antenna

    图 3  石墨烯环形偶极子天线横截面的SEM图像

    Figure 3.  Cross-section SEM images of a graphene loop dipole antenna

    图 4  弯折偶极子天线在不同参数变化下的计算阅读距离

    Figure 4.  Calculated read range for meandered-line dipole antenna with change of different parameters

    图 5  环形偶极子天线在不同参数变化下的计算阅读距离

    Figure 5.  Calculated read range for loop dipole antenna with change of different parameters

    图 6  丝网印刷石墨烯标签天线的过程

    Figure 6.  Fabrication of printed graphene tag antennas process

    图 7  丝网印刷的石墨烯标签天线的实物图

    Figure 7.  Physical image of screen-printed graphene tag antennae

    图 8  通过实验测试获得的实际阅读距离

    Figure 8.  Real read range obtained by experimental testing

    表  1  3种偶极天线的参数

    Table  1.   Parameters of the three types of dipole antennas mm

    参数 数值 参数 数值
    a1 80 b1 10
    a2 15 b2 17
    a3 50 b3 25
    a4 13 b4 14
    w 5 t 0.01
    下载: 导出CSV

    表  2  弯折偶极子天线不确定性参数的灵敏度分析

    Table  2.   Sensitivity analysis of uncertainty parameters for meandered-line dipole antenna

    不确定参数的增量式理论阅读距离增量/m
    a2+0.8 mm0.6195
    b2+0.8 mm0.0327
    w+0.8 mm1.314
    t+6 μm2.9177
    σ+6000 S/m0.8939
    下载: 导出CSV

    表  3  环形偶极子天线不确定性参数的灵敏度分析

    Table  3.   Sensitivity analysis of uncertainty parameters for loop dipole antenna

    不确定参数的增量式理论阅读距离增量/m
    a3+0.8 mm0.1532
    b3+0.8 mm0.1840
    a4+0.8 mm0.0449
    b4+0.8 mm0.0435
    t+6 mm2.7533
    σ+6000 S/m1.3478
    下载: 导出CSV
  • [1] LANDT J. The history of RFID[J]. IEEE Potentials, 2005, 24: 8-11. doi: 10.1109/MP.2005.1549751
    [2] KIM Y, LEE B, YANG S, et al. Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing[J]. Current Applied Physics, 2012, 12(2): 473-478. doi: 10.1016/j.cap.2011.08.003
    [3] SALMERÓN J F, MOLINA-LOPEZ F, BRIAND D, et al. Properties and printability of inkjet and screen-printed silver patterns for RFID antennas[J]. Journal of Electronic Materials, 2014, 43(2): 604-617. doi: 10.1007/s11664-013-2893-4
    [4] WOLF F M, PERELAER J, STUMPF S, et al. Rapid low-pressure plasma sintering of inkjet-printed silver nanoparticles for RFID antennas[J]. Journal of Materials Research, 2013, 28(9): 1254-1261. doi: 10.1557/jmr.2013.73
    [5] LI Y, LU D, WONG C P. Electrical conductive adhesives with nanotechnologies [M]. Berlin: Springer, 2010.
    [6] BJÖRNINEN T, MERILAMPI S, UKKONEN L, et al. The effect of fabrication method on passive UHF RFID tag performance[J]. International Journal of Antennas and Propagation, 2009, 2009: 920947.
    [7] YI M, SHEN Z G. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. doi: 10.1039/C5TA00252D
    [8] KOPYT P, SALSKI B, OLSZEWSKA-PLACHA M, et al. Graphene-based dipole antenna for a UHF RFID tag[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 2862-2868. doi: 10.1109/TAP.2016.2565696
    [9] HUANG X J, LENG T, ZHANG X, et al. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications[J]. Applied Physics Letters, 2015, 106(20): 203105. doi: 10.1063/1.4919935
    [10] LENG T, HUANG X J, CHANG K, et al. Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1565-1568. doi: 10.1109/LAWP.2016.2518746
    [11] AKBARI M, KHAN M W A, HASANI M, et al. Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1569-1572.
    [12] ARAPOV K, JAAKKOLA K, ERMOLOV V, et al. Graphene screen-printed radio-frequency identification devices on flexible substrates[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2016, 10(11): 812-818. doi: 10.1002/pssr.201600330
    [13] MERILAMPI S L, BJÖRNINEN T, VUORIMÄKI A, et al. The effect of conductive ink layer thickness on the functioning of printed UHF RFID antennas[J]. Proceedings of the IEEE, 2010, 98(9): 1610-1619. doi: 10.1109/JPROC.2010.2050570
    [14] JAULIN L, KIEFFER M, DIDRIT O, et al. Applied interval analysis[M]. Berlin: Springer, 2001.
    [15] HICKEY T, JU Q, VAN EMDEN M H. Interval arithmetic: from principles to implementation[J]. Journal of the ACM, 2001, 48(5): 1038-1068. doi: 10.1145/502102.502106
    [16] ALEFELD G, CLAUDIO D. The basic properties of interval arithmetic, its software realizations and some applications[J]. Computers & Structures, 1998, 67(1-3): 3-8.
    [17] RAO K V S, NIKITIN P V, LAM S F. Antenna design for UHF RFID tags: a review and a practical application[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(12): 3870-3876. doi: 10.1109/TAP.2005.859919
    [18] KRAUS J D, MARHEFKA R J. Antennas for all applications [M]. New York: McGraw-Hill, 2002: 9-14.
    [19] BALANIS C A. Antenna theory: analysis and design[J]. IEEE Antennas & Propagation Society Newsletter, 2003, 24(6): 28-29.
    [20] 田川, 尹祖伟. 无源超高频标签天线工程设计案例教程[M]. 北京: 清华大学出版社, 2019: 20-25.

    TIAN C, YIN Z W. Engineering design case studies of passive UHF tag antennas[M]. Beijing: Tsinghua University Press, 2019: 20-25(in Chinese).
    [21] ENDO T, SUNAHARA Y, SATOH S, et al. Resonant frequency and radiation efficiency of meander line antennas[J]. Electronics and Communications in Japan (Part II: Electronics), 2000, 83(1): 52-58. doi: 10.1002/(SICI)1520-6432(200001)83:1<52::AID-ECJB7>3.0.CO;2-7
    [22] BLAYO A, PINEAUX B. Printing processes and their potential for RFID printing[C]// Proceedings of the Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies. New York: ACM, 2005: 27-30.
    [23] FADDOUL R, REVERDY-BRUAS N, BLAYO A. Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications[J]. Materials Science and Engineering: B, 2012, 177(13): 1053-1066. doi: 10.1016/j.mseb.2012.05.015
    [24] HUSSEIN M T. A novel algorithm to compute all vertex matrices of an interval matrix: a computational approach[J]. International Journal of Computing & Information Sciences, 2005, 2(3): 137-142.
    [25] CAI Z. Analysis of structures with uncertain parameters using interval method[J]. Mechanics Research Communications, 2012, 47(3): 24-31.
    [26] MOORE R E. Interval analysis [M]. Englewood Cliffs, New Jersey: Prentice-Hall Inc, 1966: 8-13.
    [27] HANSEN E. Interval arithmetic in matrix computations, part I[J]. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 1965, 2(2): 308-320. doi: 10.1137/0702025
    [28] CSENDES T. Interval analysis and verification of mathematical models [C]// Uncertainties in Environmental Modelling and Consequences for Policy Making. Berlin: Springer, 2009: 79-100.
    [29] PARUGGIA M. Sensitivity analysis in practice: a guide to assessing scientific models[J]. Journal of the American Statistical Association, 2006, 101(473): 398-399.
    [30] SALTELLI A, TARANTOLA S, CAMPOLONGO F, et al. Sensitivity analysis practices: strategies for model-based inference.[J]. Reliability Engineering & System Safety, 2006, 91: 1109-1125.
    [31] ROKNE J. Optimal computation of the Bernstein algorithm for the bound of an interval polynomial[J]. Computing, 1982, 28(3): 239-246. doi: 10.1007/BF02241751
    [32] BERLEANT D, XIE L Z, ZHANG J Z. Statool: a tool for distribution envelope determination (DEnv), an interval-based algorithm for arithmetic on random variables[J]. Reliable Computing, 2003, 9(2): 91-108. doi: 10.1023/A:1023082100128
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  80
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 录用日期:  2023-05-15
  • 网络出版日期:  2023-06-06
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答