Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月面应急直接上升交会轨迹快速规划方法

班焕恒 周聪 闫晓东

樊尚春, 张秋利, 秦杰等 . 基于样条曲线插值的压力传感器的温度补偿[J]. 北京航空航天大学学报, 2006, 32(06): 684-686.
引用本文: 班焕恒,周聪,闫晓东. 月面应急直接上升交会轨迹快速规划方法[J]. 北京航空航天大学学报,2025,51(4):1352-1366 doi: 10.13700/j.bh.1001-5965.2023.0160
Fan Shangchun, Zhang Qiuli, Qin Jieet al. Temperature compensation of pressure sensor based on the interpolation of splines[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(06): 684-686. (in Chinese)
Citation: BAN H H,ZHOU C,YAN X D. Rapid planning method for lunar direct ascent and rendezvous trajectory in emergency cases[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1352-1366 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0160

月面应急直接上升交会轨迹快速规划方法

doi: 10.13700/j.bh.1001-5965.2023.0160
详细信息
    通讯作者:

    E-mail:yan804@nwpu.edu.cn

  • 中图分类号: V448.2

Rapid planning method for lunar direct ascent and rendezvous trajectory in emergency cases

More Information
  • 摘要:

    当月面探测器出现某些突发状况而需要返回环月轨道器或地球时,上升器需具备自主规划出合适的应急上升交会轨迹的能力。以上升交会时间最短为目标函数,基于序列二阶锥规划方法,建立直接上升交会轨迹优化模型,并构建求解直接上升交会轨迹优化问题的凸优化算法。为提高计算效率,对内点法进行定制化改进,主要改进有:线性方程组求解过程定制化改进;内点法热启动;二阶锥规划子问题求解精度动态调整。仿真结果表明:所提月面应急上升交会轨迹优化方法可实现上升器的快速上升交会。与采用通用内点法求解器的传统序列二阶锥规划方法相比,在求解精度不变的情况下,所提的序列二阶锥规划问题求解加速方法可达到9.5倍左右的加速比。综合运用所提方法,有望实现月面上升器的自主在线轨迹规划。

     

  • 图 1  月心球面坐标系

    Figure 1.  Lunar center spherical coordinate system

    图 2  月面应急上升交会示意图

    Figure 2.  Lunar ascent and rendezvous process in emergency cases

    图 3  推力方向几何示意图

    Figure 3.  Geometry of thrust direction

    图 4  仿射方向并行计算流程

    Figure 4.  Parallel calculation process of affine direction

    图 5  基于定制化改进内点法的序列二阶锥规划流程

    Figure 5.  Successive second-order cone programming based on customized and modified interior point method

    图 6  三维轨迹

    Figure 6.  3D trajectories

    图 7  速度和质量曲线

    Figure 7.  Velocity and mass curves

    图 8  推力曲线

    Figure 8.  Thrust curves

    图 9  不同启动方法迭代次数

    Figure 9.  Iteration times of different starting methods

    图 10  优化问题变化趋势

    Figure 10.  Optimization problem evolution trend

    图 11  不同方法的求解耗时统计图

    Figure 11.  Statistics of runtime by different methods

    表  1  不同排序方法的矩阵非零元素个数对比

    Table  1.   Number of non-zero elements of matrix for different ordering methods

    离散点数(N1+N2) 非零元素个数
    近似最小度算法 局部填充最小算法
    11+21 8194 7209
    21+41 17059 14416
    31+61 26977 21709
    41+81 34435 28916
    下载: 导出CSV

    表  2  上升器参数

    Table  2.   Parameters of ascender

    上升器总重mwet/kg 上升器干重mdry/kg 主发动机推力P1/N 主发动机比冲Isp1/s 推力器总推力P2/N 推力器比冲Isp2/s
    800 370 3000 313.7 960 290
    下载: 导出CSV

    表  3  不同M值下的计算结果对比

    Table  3.   Comparison of calculation results under different M values

    M 序列二阶锥规划
    迭代次数
    内点法
    总迭代次数
    20 15 96
    40 15 102
    60 15 102
    100 10 60
    200 10 64
    400 10 72
    600 12 84
    1 000 11 89
    下载: 导出CSV

    表  4  不同离散点数下的参数设置

    Table  4.   Parameter setting under different discrete points

    离散点数(N1+N2) 热启动参数ω 精度提高倍数M
    11+21 0.992 0 200
    21+41 0.999 2 100
    31+61 0.999 6 100
    41+81 0.999 6 100
    下载: 导出CSV

    表  5  不同方法的求解耗时统计

    Table  5.   Statistics of runtime by different methods

    离散点数
    (N1+N2)
    原方法
    耗时/ms
    定制化方法
    耗时/ms
    改进方法
    耗时/ms
    11+21 133.60 82.60 13.15
    21+41 225.20 136.70 24.00
    31+61 344.10 205.10 35.10
    41+81 495.00 308.10 51.60
    下载: 导出CSV

    表  6  不同方法加速比

    Table  6.   Speedup ratios of different methods

    离散点数
    (N1+N2)
    定制化方法
    加速比
    改进方法
    加速比
    11+21 1.62 10.19
    21+41 1.65 9.39
    31+61 1.68 9.81
    41+81 1.61 9.58
    下载: 导出CSV

    表  7  不同方法的求解精度

    Table  7.   Solving accuracies of different methods

    离散点数
    (N1+N2)
    方法 位置误差/km 速度误差/
    (m·s−1)
    11+21 原方法 16.280 4 33.529 9
    定制化方法[27] 16.280 4 33.529 9
    改进方法 16.155 7 33.268 1
    21+41 原方法 7.942 4 16.482 4
    定制化方法[27] 7.942 4 16.482 4
    改进方法 8.118 8 16.841 4
    31+61 原方法 5.262 3 10.938 1
    定制化方法[27] 5.262 3 10.938 1
    改进方法 5.312 4 11.029 8
    41+81 原方法 4.080 0 8.472 8
    定制化方法[27] 4.080 0 8.472 8
    改进方法 3.933 3 8.172 2
    下载: 导出CSV
  • [1] 欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展, 2004, 19(3): 351-358. doi: 10.3321/j.issn:1001-8166.2004.03.001

    OUYANG Z Y. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advances in Earth Science, 2004, 19(3): 351-358(in Chinese). doi: 10.3321/j.issn:1001-8166.2004.03.001
    [2] 李鑫, 刘莹莹, 周军. 载人登月舱上升入轨段的制导律设计[J]. 系统工程与电子技术, 2011, 33(11): 2480-2484. doi: 10.3969/j.issn.1001-506X.2011.11.26

    LI X, LIU Y Y, ZHOU J. Design of guidance law for lunar ascent phase of manned lunar module[J]. Systems Engineering and Electronics, 2011, 33(11): 2480-2484(in Chinese). doi: 10.3969/j.issn.1001-506X.2011.11.26
    [3] 马克茂, 陈海朋. 登月舱上升段最优轨迹设计[J]. 中国空间科学技术, 2013, 33(2): 54-60. doi: 10.3780/j.issn.1000-758X.2014.02.007

    MA K M, CHEN H P. Optimal trajectory design for the lunar module in ascent stage[J]. Chinese Space Science and Technology, 2013, 33(2): 54-60(in Chinese). doi: 10.3780/j.issn.1000-758X.2014.02.007
    [4] HULL D G, HARRIS M W. Optimal solutions for quasiplanar ascent over a spherical moon[J]. Journal of Guidance Control Dynamics, 2012, 35(4): 1218-1224. doi: 10.2514/1.55443
    [5] MA L, SHAO Z J, CHEN W F, et al. Three-dimensional trajectory optimization for lunar ascent using Gauss pseudospectral method[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2016.
    [6] 张磊. 月面上升的轨迹优化与参数分析[J]. 深空探测学报, 2019, 6(4): 391-397.

    ZHANG L. Trajectory optimization and parameter analysis for lunar ascent[J]. Journal of Deep Space Exploration, 2019, 6(4): 391-397(in Chinese).
    [7] 宋征宇, 王聪, 巩庆海. 运载火箭上升段推力下降故障的自主轨迹规划方法[J]. 中国科学(信息科学), 2019, 49(11): 1472-1487. doi: 10.1360/SSI-2019-0132

    SONG Z Y, WANG C, GONG Q H. Autonomous trajectory planning for launch vehicle under thrust drop failure[J]. Scientia Sinica (Informationis), 2019, 49(11): 1472-1487(in Chinese). doi: 10.1360/SSI-2019-0132
    [8] HAO Z M, ZHANG R. Onboard real-time generation of launch vehicle abort orbits[J]. Journal of Guidance Control Dynamics, 2021, 44(8): 1541-1549. doi: 10.2514/1.G004812
    [9] BENEDIKTER B, ZAVOLI A, COLASURDO G, et al. Convex approach to three-dimensional launch vehicle ascent trajectory optimization[J]. Journal of Guidance Control Dynamics, 2021, 44(6): 1116-1131. doi: 10.2514/1.G005376
    [10] 王华, 唐国金. 用遗传算法求解双冲量最优交会问题[J]. 中国空间科学技术, 2003, 23(1): 26-30. doi: 10.3321/j.issn:1000-758X.2003.01.005

    WANG H, TANG G J. Solving optimal rendezvous using two impulses based on genetic algorithms[J]. Chinese Space Science and Technology, 2003, 23(1): 26-30(in Chinese). doi: 10.3321/j.issn:1000-758X.2003.01.005
    [11] 冉茂鹏, 王青. 一种基于EPSO的航天器交会轨迹优化方法[J]. 宇航学报, 2013, 34(9): 1195-1201.

    RAN M P, WANG Q. Spacecraft rendezvous trajectory optimization method based on EPSO[J]. Journal of Astronautics, 2013, 34(9): 1195-1201(in Chinese).
    [12] 李君龙, 李松洲, 周荻. 一种多约束条件下的三脉冲交会优化设计方法[J]. 系统工程与电子技术, 2022, 44(8): 2612-2620. doi: 10.12305/j.issn.1001-506X.2022.08.26

    LI J L, LI S Z, ZHOU D. Optimization method for three-impulse rendezvous under multi-constraints[J]. Systems Engineering and Electronics, 2022, 44(8): 2612-2620(in Chinese). doi: 10.12305/j.issn.1001-506X.2022.08.26
    [13] 任远, 崔平远, 栾恩杰. 最优两脉冲行星际轨道转移优化算法[J]. 航空学报, 2007, 28(6): 1307-1311. doi: 10.3321/j.issn:1000-6893.2007.06.005

    REN Y, CUI P Y, LUAN E J. Interplanetary optimum two-impulse transfer trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1307-1311(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.06.005
    [14] YUE X C, YANG Y, GENG Z Y. Indirect optimization for finite-thrust time-optimal orbital maneuver[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2): 628-634. doi: 10.2514/1.44885
    [15] 武冠群. 在轨服务航天器交会轨迹优化与近距离安全接近控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    WU G Q. Research on rendezvous trajectory optimization and close-range safe approach control of on-orbit service spacecraft[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [16] 管凯颜. 不同质量航天器在连续推力下快速协同交会探讨[D]. 济南: 山东大学, 2021.

    GUAN K Y. Discussion on rapid cooperative rendezvous of spacecraft with different masses under continuous thrust[D]. Jinan: Shandong University, 2021(in Chinese).
    [17] 李萌, 龚胜平, 彭坤, 等. 直接优化算法在快速交会组合变轨策略中的应用[J]. 载人航天, 2017, 23(2): 156-162. doi: 10.3969/j.issn.1674-5825.2017.02.003

    LI M, GONG S P, PENG K, et al. Application of direct optimization algorithmin synthetic orbit maneuver strategy of short rendezvous[J]. Manned Spaceflight, 2017, 23(2): 156-162(in Chinese). doi: 10.3969/j.issn.1674-5825.2017.02.003
    [18] 周新耀, 陶勇鹏, 曾亮, 等. 空间轨道交会非线性优化方法研究[J]. 上海航天, 2018, 35(1): 54-58.

    ZHOU X Y, TAO Y P, ZENG L, et al. Study on nonlinear optimization of space orbit interception[J]. Aerospace Shanghai (Chinese & English), 2018, 35(1): 54-58(in Chinese).
    [19] ORTOLANO N, GELLER D K, AVERY A. Autonomous optimal trajectory planning for orbital rendezvous, satellite inspection, and final approach based on convex optimization[J]. The Journal of the Astronautical Sciences, 2021, 68(2): 444-479. doi: 10.1007/s40295-021-00260-5
    [20] 靳锴, 罗建军, 郑茂章, 等. 考虑导航误差和摄动影响的椭圆轨道最优交会制导[J]. 控制理论与应用, 2018, 35(10): 1484-1493. doi: 10.7641/CTA.2018.70887

    JIN K, LUO J J, ZHENG M Z, et al. Guidance design with navigation errors for relative motion in noncircular perturbed orbits[J]. Control Theory & Applications, 2018, 35(10): 1484-1493(in Chinese). doi: 10.7641/CTA.2018.70887
    [21] WANG Z B, GRANT M J. Optimization of minimum-time low-thrust transfers using convex programming[J]. Journal of Spacecraft and Rockets, 2018, 55(3): 586-598. doi: 10.2514/1.A33995
    [22] WANG Z B, GRANT M J. Minimum-fuel low-thrust transfers for spacecraft: a convex approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2274-2290. doi: 10.1109/TAES.2018.2812558
    [23] 王访寒, 周如好, 余薛浩, 等. 基于序列凸优化的上面级远程交会轨迹优化[J]. 上海航天(中英文), 2022, 39(2): 45-52.

    WANG F H, ZHOU R H, YU X H, et al. Trajectory optimization of remote rendezvous for upper stage based on sequential convex optimization[J]. Aerospace Shanghai(Chinese& English), 2022, 39(2): 45-52(in Chinese).
    [24] 彭祺擘. 考虑应急返回能力的载人登月轨道优化设计及特性分析[D]. 长沙: 国防科学技术大学, 2012.

    PENG Q B. Optimal design and characteristic analysis of manned moon orbit considering emergency return capability[D]. Changsha: National University of Defense Technology, 2012(in Chinese).
    [25] STURM J F. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones[J]. Optimization Methods and Software, 1999, 11(1-4): 625-653. doi: 10.1080/10556789908805766
    [26] DOMAHIDI A, CHU E, BOYD S. ECOS: an SOCP solver for embedded systems[C]//Proceedings of the 2013 European Control Conference. Piscataway: IEEE Press, 2013: 3071-3076.
    [27] DUERI D, ACIKMESE B, SCHARF D P, et al. Customized real-time interior-point methods for onboard powered-descent guidance[J]. Journal of Guidance Control Dynamics, 2017, 40(2): 197-212. doi: 10.2514/1.G001480
    [28] MATTINGLEY J, BOYD S. CVXGEN: a code generator for embedded convex optimization[J]. Optimization and Engineering, 2012, 13(1): 1-27. doi: 10.1007/s11081-011-9176-9
    [29] JUNG J H, O’LEARY D P. Implementing an interior point method for linear programs on a CPU-GPU system[J]. Electronic Transactions on Numerical Analysis, 2008, 28: 174-189.
    [30] WANG J W, ZHANG R, LI H F. Onboard optimization of multi-arc trajectories with constraints on duration of arcs[J]. Acta Astronautica, 2022, 192: 434-442. doi: 10.1016/j.actaastro.2021.12.023
    [31] BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2010, 3(1): 1-122.
    [32] O’DONOGHUE B, CHU E, PARIKH N, et al. Conic optimization via operator splitting and homogeneous self-dual embedding[J]. Journal of Optimization Theory and Applications, 2016, 169(3): 1042-1068. doi: 10.1007/s10957-016-0892-3
    [33] ELANGO P, KAMATH A, YU Y, et al. A customized first-order solver for real-time powered-descent guidance[C]//Proceedings of the AIAA Scitech Forum. Reston: AIAA, 2022: 0951.
    [34] SKAJAA A, ANDERSEN E D, YE Y Y. Warmstarting the homogeneous and self-dual interior point method for linear and conic quadratic problems[J]. Mathematical Programming Computation, 2013, 5(1): 1-25. doi: 10.1007/s12532-012-0046-z
    [35] CHEN Y S, YANG G W, WANG L, et al. Iteration complexity of an infeasible interior point methods for seconder-order cone programming and its warmstarting[EB/OL]. (2023-01-24)[2025-02-04]. https://doi.org/10.48550/arXiv.2205.03570.
    [36] ZHANG Z Y, ZHAO Q C, DAI F A. A warm-start strategy in interior point methods for shrinking horizon model predictive control with variable discretization step[J]. IEEE Transactions on Automatic Control, 2023, 68(6): 3830-3837. doi: 10.1109/TAC.2022.3201026
    [37] CHEN Y S, YANG G W, WANG L, et al. A fast algorithm for onboard atmospheric powered descent guidance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6112-6123.
    [38] 郝泽明, 张冉, 王嘉炜, 等. 大气层内固体火箭实时轨迹优化方法[J]. 宇航学报, 2021, 42(11): 1416-1426. doi: 10.3873/j.issn.1000-1328.2021.11.008

    HAO Z M, ZHANG R, WANG J W, et al. Real-time atmospheric trajectory optimization for solid rockets[J]. Journal of Astronautics, 2021, 42(11): 1416-1426(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.11.008
    [39] VANDENBERGHE L. The CVXOPT linear and quadratic cone program solvers[EB/OL]. (2010-03-20)[2023-03-28]. http://cvxopt.org/documentation/coneprog.pdf.
    [40] DOMAHIDI A. Methods and tools for embedded optimization and control[D]. Zurich: ETH Zurich, 2013.
    [41] DAVIS T A, GILBERT J R, LARIMORE S I, et al. A column approximate minimum degree ordering algorithm[J]. ACM Transactions on Mathematical Software, 2004, 30(3): 353-376. doi: 10.1145/1024074.1024079
    [42] GEORGE A, LIU J W H. The evolution of the minimum degree ordering algorithm[J]. SIAM Review, 1989, 31(1): 1-19. doi: 10.1137/1031001
    [43] DUFF I S, ERISMAN A M, REID J K. Direct methods for sparse matrices[M]. New York: Oxford University Press, 2017.
    [44] GILL P E, SAUNDERS M A, SHINNERL J R. On the stability of cholesky factorization for symmetric quasidefinite systems[J]. SIAM Journal on Matrix Analysis and Applications, 1996, 17(1): 35-46. doi: 10.1137/S0895479893252623
    [45] DAVIS T A. Algorithm 849[J]. ACM Transactions on Mathematical Software, 2005, 31(4): 587-591. doi: 10.1145/1114268.1114277
    [46] GAO Y, SHAO Z J, SONG Z Y. Enhanced successive convexification based on error-feedback index and line search filter[J]. Journal of Guidance Control Dynamics, 2022, 45(12): 2243-2257. doi: 10.2514/1.G005938
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  71
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 录用日期:  2023-07-11
  • 网络出版日期:  2023-07-31
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答