留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多层域适应的无标签数据故障诊断方法

王进花 刘瑞 曹洁

陈中奎, 施法中. 板料冲压成形过程的一种数值模拟方法[J]. 北京航空航天大学学报, 2001, 27(3): 340-343.
引用本文: 王进花,刘瑞,曹洁. 基于多层域适应的无标签数据故障诊断方法[J]. 北京航空航天大学学报,2025,51(4):1185-1194 doi: 10.13700/j.bh.1001-5965.2023.0166
CHEN Zhong-kui, SHI Fa-zhong. Numerical Simulation Method of Sheet Metal Stamping Process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(3): 340-343. (in Chinese)
Citation: WANG J H,LIU R,CAO J. Unlabeled data fault diagnosis method based on multi-domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1185-1194 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0166

基于多层域适应的无标签数据故障诊断方法

doi: 10.13700/j.bh.1001-5965.2023.0166
基金项目: 国家重点研发计划(2020YFB1713600);国家自然科学基金(62063020);甘肃省自然科学基金(20JR5RA463)
详细信息
    通讯作者:

    E-mail:wjh0615@lut.edu.cn

  • 中图分类号: TP277;TD453

Unlabeled data fault diagnosis method based on multi-domain adaptation

Funds: National Key Research and Development Program of China (2020YFB1713600); National Natural Science Foundation of China (62063020); Natural Science Foundation of Gansu Province (20JR5RA463)
More Information
  • 摘要:

    在工业生产中,由于源域数据和目标域数据分布有差异且有标签的故障数据量较少,以至于现有的域适应轴承故障诊断方法大多精度不高。基于此,提出多层域适应神经网络(MDANN)故障诊断方法,用于无标签数据的滚动轴承故障诊断。使用小波包分解与重构(WPT)对原始振动信号进行处理,以降低信号冗余并避免关键信号特征遗失;利用多核最大均值差异(MK-MMD)算法对输入特征值进行差异计算,并通过反向传播更新多层域适应神经网络的参数,使其能够提取域不变特征;为保证无标签目标域数据可以正常参与网络训练,使用最大概率标签作为真实标签的伪标签策略,解决目标域无标签数据无法训练问题,增强模型可靠诊断知识的获取。采用2个公开数据集CWRU和PU进行验证。实验结果表明:所提方法与常见的域适应方法对比具有更高的诊断精度,说明该方法能够有效地学习可迁移特征,拟合2个数据集之间的数据分布差异。

     

  • 图 1  域适应

    Figure 1.  Domain adaptation

    图 2  本文方法网络结构

    Figure 2.  Network structure of the proposed method

    图 3  网络训练流程

    Figure 3.  Network training flow

    图 4  CWRU滚动轴承实验平台

    Figure 4.  CWRU rolling bearing test platform

    图 5  PU滚动轴承实验平台

    1.电机;2.扭矩测量单元;3.轴承测量单元;4.飞轮;5.负载电机。

    Figure 5.  PU rolling bearing test platform

    图 6  不同实验参数的诊断结果

    Figure 6.  Diagnosis results of different experimental parameters

    图 7  轴承分类的混淆矩阵

    Figure 7.  Confusion matrix for bearing classification

    图 8  不同处理策略对于诊断精度影响的t-SNE可视化

    Figure 8.  t-SNE visualization of effects of different processing strategies on diagnosis accuracy

    图 9  不同模型的t-SNE图

    Figure 9.  t-SNE diagrams of different models

    表  1  网络参数详解

    Table  1.   Detailed explanation of network parameters

    网络层 网络参数 激活函数 输出尺寸
    输入层 2048×1
    卷积层C1 3×1×20 非线性映射Relu 2046×20
    卷积层C2 3×20×20 非线性映射Relu 1020×20
    卷积层C3 3×20×20 非线性映射Relu 508×20
    卷积层C4 3×20×20 非线性映射Relu 252×20
    池化层P1~P6 2×1
    全连接层F1 5040×1
    全连接层F2 5040×256 256×1
    全连接层F3 256×5 分类函数SoftMax 5×1
    下载: 导出CSV

    表  2  数据集的基本情况

    Table  2.   Basic information of datasets

    数据集 转速/(r·min−1 负载/N 训练集/测试集
    (故障样本数)
    数据集A(CWRU) 1700 1470 1500/500
    数据集B (PU) 1500 1000 1500/500
    下载: 导出CSV

    表  3  不同数据处理方法的诊断精度

    Table  3.   Diagnosis accuracy of different data processing methods

    数据处理方法 输入特征 迁移任务 诊断精度/%
    不做处理 2048×1 A->B 62.23
    FFT 2048×1 A->B 71.48
    CWT 2014×1 A->B 73.65
    WPT 2048×1 A->B 82.14
    不做处理 2048×1 B->A 54.21
    FFT 2048×1 B->A 75.47
    CWT 2014×1 B->A 71.56
    WPT 2048×1 B->A 80.37
    下载: 导出CSV

    表  4  多层域适应对诊断精度的影响

    Table  4.   Effect of multi-domain adaptation on diagnosis accuracy

    处理策略 训练时间/s 训练任务 诊断精度/%
    不添加MK-MMD 93 A->B 37.21
    F1处添加MK-MMD 108 A->B 71.32
    F1,F2处添加MK-MMD 124 A->B 77.56
    F1,F2,F3处添加MK-MMD 147 A->B 82.94
    不添加MK-MMD 89 B->A 41.83
    F1处添加MK-MMD 97 B->A 75.89
    F1,F2处添加MK-MMD 123 B->A 79.87
    F1,F2,F3处添加MK-MMD 148 B->A 83.21
    下载: 导出CSV

    表  5  不同模型的精度

    Table  5.   Accuracy of different models

    网络模型 是否域适应 迁移任务 输入特征 诊断精度/%
    TCA A->B 2048×1 47.12
    DDC A->B 224×224×3 74.32
    DAN A->B 2048×1 76.86
    DANN A->B 224×224×3 77.58
    MANN A->B 2048×1 32.15
    MDANN A->B 2048×1 84.17
    TCA B->A 2048×1 28.21
    DDC B->A 224×224×3 65.36
    DAN B->A 2048×1 74.21
    DANN B->A 224×224×3 75.36
    MANN B->A 2048×1 36.58
    MDANN B->A 2048×1 82.15
    下载: 导出CSV
  • [1] YU X, LIANG Z T, WANG Y J, et al. A wavelet packet transform-based deep feature transfer learning method for bearing fault diagnosis under different working conditions[J]. Measurement, 2022, 201: 111597. doi: 10.1016/j.measurement.2022.111597
    [2] HU Q, SI X S, QIN A S, et al. Balanced adaptation regularization based transfer learning for unsupervised cross-domain fault diagnosis[J]. IEEE Sensors Journal, 2022, 22(12): 12139-12151. doi: 10.1109/JSEN.2022.3174396
    [3] 赵小强, 张青青, 陈鹏, 等. 基于PSO-BFA和改进Alexnet的滚动轴承故障诊断方法[J]. 振动与冲击, 2020, 39(7): 21-28.

    ZHAO X Q, ZHANG Q Q, CHEN P, et al. Rolling bearing fault diagnosis method based on improved Alexnet and PSO-BFA[J]. Journal of Vibration and Shock, 2020, 39(7): 21-28(in Chinese).
    [4] XU W, WAN Y, ZUO T Y, et al. Transfer learning based data feature transfer for fault diagnosis[J]. IEEE Access, 2020, 8: 76120-76129. doi: 10.1109/ACCESS.2020.2989510
    [5] MA P, ZHANG H L, FAN W H, et al. A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network[J]. Measurement Science and Technology, 2019, 30(5): 055402. doi: 10.1088/1361-6501/ab0793
    [6] WU Z H, JIANG H K, ZHAO K, et al. An adaptive deep transfer learning method for bearing fault diagnosis[J]. Measurement, 2020, 151: 107227. doi: 10.1016/j.measurement.2019.107227
    [7] 刘飞, 陈仁文, 邢凯玲, 等. 基于迁移学习与深度残差网络的滚动轴承快速故障诊断算法[J]. 振动与冲击, 2022, 41(3): 154-164.

    LIU F, CHEN R W, XING K L, et al. Fast fault diagnosis algorithm for rolling bearing based on transfer learning and deep residual network[J]. Journal of Vibration and Shock, 2022, 41(3): 154-164(in Chinese).
    [8] ZOU Y S, LIU Y Z, DENG J L, et al. A novel transfer learning method for bearing fault diagnosis under different working conditions[J]. Measurement, 2021, 171: 108767. doi: 10.1016/j.measurement.2020.108767
    [9] ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690.
    [10] SHAO J J, HUANG Z W, ZHU J M. Transfer learning method based on adversarial domain adaption for bearing fault diagnosis[J]. IEEE Access, 2020, 8: 119421-119430. doi: 10.1109/ACCESS.2020.3005243
    [11] LI B, TANG B P, DENG L, et al. Joint attention feature transfer network for gearbox fault diagnosis with imbalanced data[J]. Mechanical Systems and Signal Processing, 2022, 176: 109146. doi: 10.1016/j.ymssp.2022.109146
    [12] 张根保, 李浩, 冉琰, 等. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1617-1626.

    ZHANG G B, LI H, RAN Y, et al. A transfer learning model for bearing fault diagnosis[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1617-1626(in Chinese).
    [13] LIU M K, TRAN M Q, WENG P Y. Fusion of vibration and current signatures for the fault diagnosis of induction machines[J]. Shock and Vibration, 2019, 2019(1): 7176482.
    [14] JIE H J, WANDA P. RunPool: a dynamic pooling layer for convolution neural network[J]. International Journal of Computational Intelligence Systems, 2020, 13(1): 66-76. doi: 10.2991/ijcis.d.200120.002
    [15] YANG Z N, WANG X Y, YANG R. Transfer learning based rolling bearing fault diagnosis[C]//Proceedings of the IEEE 10th Data Driven Control and Learning Systems Conference. Piscataway: IEEE Press, 2021: 354-359.
    [16] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. doi: 10.11897/SP.J.1016.2020.00755

    XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780(in Chinese). doi: 10.11897/SP.J.1016.2020.00755
    [17] SHABBEER BASHA S H, DUBEY S R, PULABAIGARI V, et al. Impact of fully connected layers on performance of convolutional neural networks for image classification[J]. Neurocomputing, 2020, 378: 112-119. doi: 10.1016/j.neucom.2019.10.008
    [18] 史加荣, 王丹, 尚凡华, 等. 随机梯度下降算法研究进展[J]. 自动化学报, 2021, 47(9): 2103-2119.

    SHI J R, WANG D, SHANG F H, et al. Research advances on stochastic gradient descent algorithms[J]. Acta Automatica Sinica, 2021, 47(9): 2103-2119(in Chinese).
    [19] CAO X Y, LAI L F. Distributed gradient descent algorithm robust to an arbitrary number of Byzantine attackers[J]. IEEE Transactions on Signal Processing, 2019, 67(22): 5850-5864. doi: 10.1109/TSP.2019.2946020
    [20] ACHARYA U R, YANTI R, ZHENG J W, et al. Automated diagnosis of epilepsy using CWT, HOS and texture parameters[J]. International Journal of Neural Systems, 2013, 23(3): 1350009. doi: 10.1142/S0129065713500093
    [21] SHEN J X, SONG D, MA T C, et al. Blade crack detection based on domain adaptation and autoencoder of multidimensional vibro-acoustic feature fusion[J]. Structural Health Monitoring, 2023, 22(5): 3498-3513. doi: 10.1177/14759217221139134
    [22] ZHANG W P, ZHANG P, HE X H, et al. Convolutional neural network based two-layer transfer learning for bearing fault diagnosis[J]. IEEE Access, 2022, 10: 109779-109794. doi: 10.1109/ACCESS.2022.3213657
    [23] LONG M S, ZHU H, WANG J M, et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York: ACM, 2017: 2208-2217.
    [24] WANG Q, MICHAU G, FINK O. Domain adaptive transfer learning for fault diagnosis[C]//Proceedings of the Prognostics and System Health Management Conference. Piscataway: IEEE Press, 2019: 279-285.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 录用日期:  2023-06-09
  • 网络出版日期:  2023-06-29
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答