留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多谱自适应小波和盲源分离耦合的生理信号降噪方法

王振宇 向泽锐 支锦亦 丁铁成 邹瑞

韩先国, 刘岩龙. 3UPS-S并联机构单支链驱动奇异分析[J]. 北京航空航天大学学报, 2014, 40(1): 6-9.
引用本文: 王振宇,向泽锐,支锦亦,等. 多谱自适应小波和盲源分离耦合的生理信号降噪方法[J]. 北京航空航天大学学报,2025,51(3):910-921 doi: 10.13700/j.bh.1001-5965.2023.0179
Han Xianguo, Liu Yanlong. Singularity of 3UPS-S parallel mechanism in single limb motion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 6-9. (in Chinese)
Citation: WANG Z Y,XIANG Z R,ZHI J Y,et al. Physiological signal denoising method based on multi-spectrum adaptive wavelet and blind source separation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):910-921 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0179

多谱自适应小波和盲源分离耦合的生理信号降噪方法

doi: 10.13700/j.bh.1001-5965.2023.0179
基金项目: 教育部2022年第二批产学合作协同育人项目(220705329291641);西南交通大学新型交叉学科培育基金(YG2022006)
详细信息
    通讯作者:

    E-mail:xiangzerui@163.com

  • 中图分类号: TP391.41

Physiological signal denoising method based on multi-spectrum adaptive wavelet and blind source separation

Funds: Second Batch of Collaborative Education Projects by the Ministry of Education in 2022 (220705329291641); New Interdisciplinary Cultivation Fund of Southwest Jiaotong University (YG2022006)
More Information
  • 摘要:

    为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信噪比(SNR)和均方根误差(RMSE)。结果表明:所提方法在软阈值下具有较强的适用性,增强后的信号软阈值相比硬阈值,SNR提升约44.2%,RMSE下降约28.8%,处理时间减少约1.4%。软阈值相比自适应阈值,SNR提升约706%,RMSE下降约16.7%,处理时间减少约3.0%。为对比软阈值下各参数差异,使用软阈值对原始信号、加噪信号和增强信号进行对比分析及归一化处理。结果显示增强后的信号具有较好的SNR、较低的RMSE和较短的处理时间,软阈值下增强后的信号与原始信号相比,SNR提升约0.12%,RMSE下降约2.5%,处理时间减少约3.9%,进一步验证了所提方法的有效性,并提高了信号质量。

     

  • 图 1  盲源分离和小波阈值耦合的生理信号降噪流程

    Figure 1.  Flowchart for physiological signal denoising using blind source separation and wavelet threshold coupling

    图 2  数据增强对比(EMG信号为例)

    Figure 2.  Comparison of data augmentation for EMG signals

    图 3  信号合并时频

    Figure 3.  Time-frequency of signal mixing

    图 4  盲源分离对比

    Figure 4.  Comparison of blind source separation

    图 5  盲源分离时频

    Figure 5.  Time-frequency of blind source separation

    图 6  盲源分离MAC图

    Figure 6.  MAC diagram of blind source separation

    图 7  归一化参数对比

    Figure 7.  Comparison of normalized parameters

    表  1  原始信号、加噪信号、增强信号参数对比

    Table  1.   Comparison of parameters of original, noisy, and enhanced signals

    指标 SNR提升/μV RMSE下降/μV 处理时间/s
    原始信号 加噪信号 增强信号 原始信号 加噪信号 增强信号 原始信号 加噪信号 增强信号
    软阈值 8.17 8.16 8.15 0.05 0.05 0.05 3.81 3.72 3.67
    硬阈值 5.65 5.63 5.61 0.066 0.07 0.07 3.83 3.74 3.65
    自适应阈值 1.08 1.06 1.01 0.12 0.12 0.12 3.82 3.73 3.69
    下载: 导出CSV

    表  2  盲源分离前后参数对比

    Table  2.   Comparison of parameters before and after blind source separation

    指标 SNR提升/μV RMSE下降/μV 处理时间/s
    分离前 分离后 分离前 分离后 分离前 分离后
    软阈值 7.90 7.96 10.76 7.65 4.18 4.04
    硬阈值 5.43 5.51 14.30 10.15 4.25 4.12
    自适应阈值 0.15 0.17 26.26 18.74 4.16 1.14
    下载: 导出CSV
  • [1] SHU L, XIE J Y, YANG M Y, et al. A review of emotion recognition using physiological signals[J]. Sensors, 2018, 18(7): 2074. doi: 10.3390/s18072074
    [2] LAL B, GRAVINA R, SPAGNOLO F, et al. Compressed sensing approach for physiological signals: a review[J]. IEEE Sensors Journal, 2023, 23(6): 5513-5534. doi: 10.1109/JSEN.2023.3243390
    [3] ZHU J J, WEI Y X, FENG Y F, et al. Physiological signals-based emotion recognition via high-order correlation learning[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15(3s): 1-18.
    [4] BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F, et al. A blind source separation technique using second-order statistics[J]. IEEE Transactions on Signal Processing, 1997, 45(2): 434-444. doi: 10.1109/78.554307
    [5] FU Z Z, ZHANG B N, HE X R, et al. Emotion recognition based on multi-modal physiological signals and transfer learning[J]. Frontiers in Neuroscience, 2022, 16: 1000716. doi: 10.3389/fnins.2022.1000716
    [6] GOLDHACKER M, KECK P, IGEL A, et al. A multi-variate blind source separation algorithm[J]. Computer Methods and Programs in Biomedicine, 2017, 151: 91-99. doi: 10.1016/j.cmpb.2017.08.019
    [7] CHEN X, WANG Z J, MCKEOWN M. Joint blind source separation for neurophysiological data analysis: Multiset and multimodal methods[J]. IEEE Signal Processing Magazine, 2016, 33(3): 86-107. doi: 10.1109/MSP.2016.2521870
    [8] XIONG F, CHEN D Y. CEEMDAN-IMFx-PCA-CICA: an improved single-channel blind source separation in multimedia environment for motion artifact reduction in ambulatory ECG[J]. Complex & Intelligent Systems, 2023, 9(3): 2555-2569.
    [9] VON LÜHMANN A, BOUKOUVALAS Z, MÜLLER K R, et al. A new blind source separation framework for signal analysis and artifact rejection in functional Near-Infrared Spectroscopy[J]. NeuroImage, 2019, 200: 72-88. doi: 10.1016/j.neuroimage.2019.06.021
    [10] ROY V, SHUKLA S. Designing efficient blind source separation methods for EEG motion artifact removal based on statistical evaluation[J]. Wireless Personal Communications, 2019, 108(3): 1311-1327. doi: 10.1007/s11277-019-06470-3
    [11] SAUER J, STREPPEL M, PETERSEN E, et al. Blind source separation of inspiration and expiration in respiratory sEMG signals[J]. Physiological Measurement, 2022, 43(7): 075007. doi: 10.1088/1361-6579/ac799c
    [12] ROUSSEL J, RAVIER P, HARITOPOULOS M, et al. Decomposition of multi-channel intramuscular EMG signals by cyclostationary-based blind source separation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11): 2035-2045. doi: 10.1109/TNSRE.2017.2700890
    [13] NEGRO F, MUCELI S, CASTRONOVO A M, et al. Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation[J]. Journal of Neural Engineering, 2016, 13(2): 026027. doi: 10.1088/1741-2560/13/2/026027
    [14] WEDEKIND D, KLEYKO D, OSIPOV E, et al. Robust methods for automated selection of cardiac signals after blind source separation[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(10): 2248-2258. doi: 10.1109/TBME.2017.2788701
    [15] WAN P W, HAO B J, LI Z, et al. Time differences of arrival estimation of mixed interference signals using blind source separation based on wireless sensor networks[J]. IET Signal Processing, 2016, 10(8): 924-929. doi: 10.1049/iet-spr.2016.0002
    [16] DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224. doi: 10.1080/01621459.1995.10476626
    [17] DAUBECHIES I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 909-996. doi: 10.1002/cpa.3160410705
    [18] ZHAO H M, ZUO S Y, HOU M, et al. A novel adaptive signal processing method based on enhanced empirical wavelet transform technology[J]. Sensors, 2018, 18(10): 3323. doi: 10.3390/s18103323
    [19] JUTTEN C, HERAULT J. Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991, 24(1): 1-10. doi: 10.1016/0165-1684(91)90079-X
    [20] XIE Y, ZOU T, YANG J, et al. SA-UCBSS: sparsity-based adaptive underdetermined convolutive blind source separation[J]. Knowledge-Based Systems, 2024, 212: 112224.
    [21] LI Q, YANG J H, CHEN X, et al. The decomposition of surface EMG signals based on blind source separation of convolved mixtures[J]. Conference Proceedings, 2005, 2005: 5912-5915.
    [22] HU J, GUO T, HAN C. Stochastic linearized generalized alternating direction method of multipliers: expected convergence rates and large deviation properties[J]. Mathematical Structures in Computer Science, 2023, 66(3): 1-18.
    [23] YAN X T, BOUDRIAS M H, MITSIS G D. Removal of transcranial alternating current stimulation EEG artifacts using blind source separation and wavelets[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(10): 3183-3192. doi: 10.1109/TBME.2022.3162490
    [24] ORTIZ-ECHEVERRI C J, SALAZAR-COLORES S, RODRÍGUEZ-RESÉNDIZ J, et al. A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network[J]. Sensors, 2019, 19(20): 4541. doi: 10.3390/s19204541
    [25] LI X, ZHENG Y, ZHANG J, et al. Finite SNR diversity-multiplexing trade-off in hybrid ABCom/RCom-assisted NOMA networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(10): 9108-9119. doi: 10.1109/TMC.2024.3357753
    [26] HASSAN N, RAMLI D A. Sparse component analysis (SCA) based on adaptive time: frequency thresholding for underdetermined blind source separation (UBSS)[J]. Sensors, 2023, 23(4): 2060. doi: 10.3390/s23042060
    [27] CASTAÑO USUGA F A, GISSEL C, HERNÁNDEZ A M. Motion artifact reduction in electrocardiogram signals through a redundant denoising independent component analysis method for wearable health care monitoring systems: algorithm development and validation[J]. JMIR Medical Informatics, 2022, 10(11): e40826. doi: 10.2196/40826
    [28] METSOMAA J, SARVAS J, ILMONIEMI R J. Blind source separation of event-related EEG/MEG[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(9): 2054-2064. doi: 10.1109/TBME.2016.2616389
    [29] CHEN Y, CHENG Y N, LIU H L. Application of improved wavelet adaptive threshold de-noising algorithm in FBG demodulation[J]. Optik, 2017, 132: 243-248. doi: 10.1016/j.ijleo.2016.12.052
    [30] MA S, ZHANG H J, MIAO Z Y. Blind source separation for the analysis sparse model[J]. Neural Computing and Applications, 2021, 33(14): 8543-8553. doi: 10.1007/s00521-020-05606-y
    [31] XU X W, LIANG Y, HE P, et al. Adaptive motion artifact reduction based on empirical wavelet transform and wavelet thresholding for the non-contact ECG monitoring systems[J]. Sensors, 2019, 19(13): 2916. doi: 10.3390/s19132916
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  24
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 录用日期:  2023-06-16
  • 网络出版日期:  2023-07-19
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答