留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岸基GNSS-R码测高反演模型

宁保蛟 王娜子 荆丽丽 高凡 孔亚慧 贺匀峤

宁保蛟,王娜子,荆丽丽,等. 岸基GNSS-R码测高反演模型[J]. 北京航空航天大学学报,2025,51(4):1395-1403 doi: 10.13700/j.bh.1001-5965.2023.0213
引用本文: 宁保蛟,王娜子,荆丽丽,等. 岸基GNSS-R码测高反演模型[J]. 北京航空航天大学学报,2025,51(4):1395-1403 doi: 10.13700/j.bh.1001-5965.2023.0213
NING B J,WANG N Z,JING L L,et al. The retrieval model of shore-based GNSS-R code altimetry[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1395-1403 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0213
Citation: NING B J,WANG N Z,JING L L,et al. The retrieval model of shore-based GNSS-R code altimetry[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1395-1403 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0213

岸基GNSS-R码测高反演模型

doi: 10.13700/j.bh.1001-5965.2023.0213
基金项目: 山东省重点研发计划(重大科技创新工程)(2021ZDSYS01); 国家自然科学基金(41704017,41604003); 山东省自然科学基金(ZR2022MD046)
详细信息
    通讯作者:

    E-mail:wnz@sdu.edu.cn

  • 中图分类号: P228.4

The retrieval model of shore-based GNSS-R code altimetry

Funds: Key Research and Development Program of Shandong Province (Major Technological Innovation Project) (2021ZDSYS01); National Natural Science Foundation of China (41704017,41604003 ); Shandong Provincial Natural Science Foundation (ZR2022MD046)
More Information
  • 摘要:

    全球导航卫星系统反射测量(GNSS-R)海面测高作为GNSS技术应用领域之一,其凭借全天时、低成本、高时空分辨率等特点在海洋遥感领域占据极大的优势。但受GNSS码片宽度的限制,岸基GNSS-R码延迟海面测高的最优精度仅为分米级,难以满足大地测量学领域对海面高的精度要求。提出利用傅里叶级数拟合法对码延迟测高结果进行优化,并于山东省威海市开展GNSS-R码测高实验进行验证,分别对QZSS L2C信号、QZSS L5信号及GPS L5信号的码延迟测高结果进行拟合处理并计算反演精度,对比原始测高结果发现:3段不同时长的原始测高结果经过傅里叶级数拟合优化后,其均方根误差(RMSE)从70~90 cm提升至9~15 cm。在此基础上,利用拟合所得傅里叶级数曲线对未来24 h内的海面高进行预测,与验潮站数据相比,预测结果仍保持较高精度,RMSE为13~18 cm,相关系数大于0.97。结果表明所提出的方法不仅能对码延迟测高结果进行优化,能对存在数据缺失的情况进行补充,还能对未来海面高度进行高精度的预测。

     

  • 图 1  岸基GNSS-R码延迟海面测高模型

    Figure 1.  Shore-based GNSS-R code delayed sea level altimeter model

    图 2  2020年11月5日及2021年3月30日实验环境及实验地点

    Figure 2.  Experimental environment and experimental location on 5 November 2020 and 30 March 2021

    图 3  2023年5月27日实验环境及实验地点

    Figure 3.  Experimental environment and experimental location on 27 May 2023

    图 4  3段数据码测高结果与海面真实高度对比

    Figure 4.  Sea levels derived from GNSS-R code-delay altimetry of the three data codes are compared with the real sea surface height

    图 5  QZSS L2C1/2阶傅里叶级数拟合值与雷达高度计数据比较

    Figure 5.  First- and Second-Fourier series fitting data of QZSS GEO L2C

    图 6  GPS L51/2阶傅里叶级数拟合值与雷达高度计数据比较

    Figure 6.  First- and Second-Fourier series fitting data of QZSS GPS L5

    图 7  1阶、2阶和3阶傅里叶级数拟合的QZSS GEO L5码测高结果与验潮站数据对比

    Figure 7.  First-, Second- and Third- Fourier series fitting data of QZSS GEO L5

    图 8  2023年5月28日2阶傅里叶级数拟合曲线计算的海面高度与验潮站数据比较

    Figure 8.  Comparison between sea levels calculated from Second- order Fourier series fitting curve and tide gauge data on May 28th, 2023

    表  1  3次实验期间实验地点潮汐变化表

    Table  1.   Table of tidal change at experimental site during the three experiments

    潮汐 潮时 潮高(峰值)/cm
    第1段 第2段 第3段 第1段 第2段 第3段
    干潮 05:35 04:29 00:40 37 45 84
    满潮 11:27 10:17 07:26 222 209 239
    干潮 17:53 16:06 14:26 42 55 65
    满潮 23:48 22:25 20:15 221 242 196
    下载: 导出CSV

    表  2  3段实验数据的GNSS-R码测高精度统计

    Table  2.   Statistical analysis of the three experimental data for GNSS-R code-delay altimetry

    数据类型 均值/m RMSE/m
    QZSS L2C 0.0467 0.7618
    GPS L5 0.2877 0.8083
    QZSS L5 0.0438 0.8606
    下载: 导出CSV

    表  3  3段实验数据的傅里叶级数拟合结果与比对数据对比精度统计

    Table  3.   Statistical analysis of the Fourier series fitting results comparing with in-situ data

    数据类型 均值/m RMSE/m R2/%
    QZSS L2C(m=1) 0.0451 0.1481 99.33
    QZSS L2C(m=2) 0.0429 0.1961 98.14
    GPS L5(m=1) 0.0256 0.1011 98.07
    GPS L5(m=2) 0.0138 0.1077 97.36
    QZSS L5(m=1) 0.0610 0.1861 91.60
    QZSS L5(m=2) 0.0392 0.0961 97.99
    QZSS L5(m=3) 0.0417 0.1016 97.76
    下载: 导出CSV

    表  4  QZSS L5模型预测海面高与验潮站结果比较

    Table  4.   Statistical analysis of the sea levels from Fourier series fitting model comparing with in-situ data

    时间 均值/m RMSE/m R2/%
    未来1 h 0.1307 0.1321 99.64
    未来12 h 0.1512 0.1856 97.15
    未来24 h 0.0476 0.1419 95.16
    下载: 导出CSV
  • [1] VALENCIA E, ZAVOROTNY V U, AKOS D M, et al. Using DDM asymmetry metrics for wind direction retrieval from GPS ocean-scattered signals in airborne experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(7): 3924-3936.
    [2] RUF C S, GLEASON S, MCKAGUE D S. Assessment of CYGNSS wind speed retrieval uncertainty[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 12(1): 87-97.
    [3] RUF C S, BALASUBRAMANIAM R. Development of the CYGNSS geophysical model function for wind speed[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 12(1): 66-77.
    [4] FOTI G, GOMMENGINGER C, JALES P, et al. Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission[J]. Geophysical Research Letters, 2015, 42(13): 5435-5441.
    [5] CLARIZIA M P, RUF C S, JALES P, et al. Spaceborne GNSS-R minimum variance wind speed estimator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6829-6843. doi: 10.1109/TGRS.2014.2303831
    [6] GAO F, XU T H, MENG X Y, et al. A coastal experiment for GNSS-R code-level altimetry using BDS-3 new civil signals[J]. Remote Sensing, 2021, 13(7): 1378. doi: 10.3390/rs13071378
    [7] ZHANG G D, XU Z C, WANG F, et al. Evaluation and correction of elevation angle influence for coastal GNSS-R ocean altimetry[J]. Remote Sensing, 2021, 13(15): 2978. doi: 10.3390/rs13152978
    [8] CARRENO-LUENGO H, PARK H, CAMPS A, et al. Submeter ocean altimetry with GPS L1 C/a signal[C]// 2012 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2012: 7071-7074.
    [9] SOISUVARN S, JELENAK Z, SAID F, et al. The GNSS reflectometry response to the ocean surface winds and waves[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4678-4699. doi: 10.1109/JSTARS.2016.2602703
    [10] RUFFINI G, SOULAT F, CAPARRINI M, et al. The Eddy Experiment: accurate GNSS-R ocean altimetry from low altitude aircraft[J]. Geophysical Research Letters, 2004, 31(12): 261-268.
    [11] 吴军, 张波, 洪学宝, 等. 基于北斗卫星反射信号的海面溢油探测方法及试验[J]. 北京航空航天大学学报, 2017, 43(1): 193-199.

    WU J, ZHANG B, HONG X B, et al. Sea surface oil spill detection method using BeiDou satellite reflected signal and its experiment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 193-199(in Chinese).
    [12] VALENCIA E, CAMPS A, RODRIGUEZ-ALVAREZ N, et al. Using GNSS-R imaging of the ocean surface for oil slick detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 6(1): 217-223.
    [13] LI C, HUANG W M, GLEASON S. Dual antenna space-based GNSS-R ocean surface mapping: oil slick and tropical cyclone sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(1): 425-435.
    [14] ZHU Y C, TAO T Y, LI J Y, et al. Spaceborne GNSS-R for sea ice classification using machine learning classifiers[J]. Remote Sensing, 2021, 13(22): 4577. doi: 10.3390/rs13224577
    [15] ZHANG Y, MENG W T, GU Q M, et al. Detection of Bohai Bay Sea ice using GPS-reflected signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(1): 39-46.
    [16] YAN Q Y, HUANG W M, MOLONEY C. Neural networks based sea ice detection and concentration retrieval from GNSS-R delay-Doppler maps[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3789-3798. doi: 10.1109/JSTARS.2017.2689009
    [17] ALONSO-ARROYO A, ZAVOROTNY V U, CAMPS A. Sea ice detection using U. K. TDS-1 GNSS-R data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 4989-5001. doi: 10.1109/TGRS.2017.2699122
    [18] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331-355.
    [19] MARTIN-NEIRA M, CAPARRINI M, FONT-ROSSELLO J, et al. The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 142-150. doi: 10.1109/36.898676
    [20] TREUHAFT R N, LOWE S T, ZUFFADA C, et al. 2-cm GPS altimetry over crater lake[J]. Geophysical Research Letters, 2001, 28(23): 4343-4346. doi: 10.1029/2001GL013815
    [21] 王鑫, 孙强, 张训械, 等. 中国首次岸基GNSS-R海洋遥感实验[J]. 科学通报, 2008, 53(5): 589-592. doi: 10.1360/csb2008-53-5-589

    WANG X, SUN Q, ZHANG X X, et al. First China ocean reflection experiment using coastal GNSS-R[J]. Chinese Science Bulletin, 2008, 53(5): 589-592(in Chinese). doi: 10.1360/csb2008-53-5-589
    [22] 白伟华, 孙越强, 朱光武, 等. 利用岸基GNSS-R 信号反演湖面高度[C]//第一届中国卫星导航学术年会, 2010: 496-502.

    BAI W H, SUN Y Q, ZHU G W, et al. Lake surface height retrieve using coastal GNSS-R signals[C]//The first China Satellite Navigation Conference, 2010: 1646-1652(in Chinese).
    [23] ZHANG Y, TIAN L M, MENG W T, et al. Feasibility of code-level altimetry using coastal BeiDou reflection (BeiDou-R) setups[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4130-4140. doi: 10.1109/JSTARS.2015.2446684
    [24] 储倜, 贺凯飞, 高凡, 等. 基于QZSS L1信号的岸基GNSS-R码延迟海面测高[J]. 北京航空航天大学学报, 2022, 48(4): 691-697.

    CHU T, HE K F, GAO F, et al. Coastal GNSS-R ocean altimetry based on code delay of QZSS L1 signal[J], Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 691-697(in Chinese).
    [25] 侯金华, 贺凯飞, 高凡, 等. 岸基BDS-R海面测高及其观测值加权方法[J]. 北京航空航天大学学报, 2024, 50(3): 1015-1026.

    HOU J H, HE K F, GAO F, et al. Shore-based BDS-R sea surface altimetry and weighting method of its observed values[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(3): 1015-1026(in Chinese).
    [26] 孟馨悦. GNSS-R实时软件接收机设计及其海陆应用[D]. 济南: 山东大学, 2022.

    MENG X Y. Design of GNSS-R real-time software receiver and its land and sea application[D]. Jinan: Shandong University, 2022 (in Chinese).
    [27] 贺匀峤. 高精度GNSS-R海面测高基带信号处理研究[D]. 济南: 山东大学, 2022.

    HE Y Q. Research on baseband signal processing of high precision GNSS-R sea surface altimetry[D]. Jinan: Shandong University, 2022 (in Chinese).
    [28] WANG N Z, HE K F, GAO F, et al. Analysis of GNSS-R code-level altimetry using QZSS C/A, L1C, and BDS B1C signals and their combinations in a coastal experiment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 4549-4564. doi: 10.1109/JSTARS.2023.3274570
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  63
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 录用日期:  2023-07-21
  • 网络出版日期:  2023-08-09
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答