-
摘要:
由于依据统一间隔标准构建的复杂网络未考虑机型运行的差异性,不能满足基于航迹运行(TBO)下空中交通复杂性分析的精细化要求。为解决该问题,提出一种基于复杂网络区分不同机型的空中交通复杂性分析模型。建立不同机型侧向飞行安全间隔模型,构建航空器精准保护区,优化飞行冲突网络中航空器连边的判定依据。飞行冲突判断在考虑航空器航向和速度等信息的基础上,关注航空器的不同性能与状态,使飞行冲突网络能够更加贴近TBO的运行模式。通过实验仿真TBO运行环境,同时利用厦门高崎国际机场雷达数据进行验证。结果表明:所提模型较改进前的飞行冲突网络,能够精细化航空器间的水平安全间隔标准,降低空域的复杂度,减轻管制员工作负荷,提高空域的运行效率,为航空器自主选择最优化航迹提供更大的空间。
Abstract:Since the complex network constructed based on the unified spacing standard does not take into account the differences in aircraft type operation, it cannot meet the refined requirements of air traffic complexity analysis under trajectory based operation (TBO). A complex network-based air traffic complexity analysis model is suggested as a solution to this issue in order to differentiate between various aircraft types. In order to create an aircraft precision protection zone and optimize the foundation for identifying the aircraft related edges in the flight conflict network, a lateral flight safety interval calculation model is first developed for various aircraft types. Based on the information on aircraft heading and speed, the flight conflict judgment focuses on different performances and status of aircraft, so that the flight conflict network can be closer to the operation mode of TBO. The findings demonstrate that the model can improve the operational efficiency of the airspace, decrease the complexity of the airspace, lessen the workload of controllers, improve the horizontal separation criteria between aircraft, and give aircraft more freedom to select the best course on their own than the previous flight conflict network.
-
表 1 最低安全间隔计算模型所需参数值
Table 1. Required parameter values for the minimum safety interval calculation model
航空器 λx/m λy/m λz/m v/(m·s−1) β/(°) σcns σw μw Np A380 72.8 79.8 24.1 251 20 64.5 10.8 60.3 16 B737-800 39.5 35.8 12.5 230 20 64.5 11.5 60.3 16 表 2 6个等级航空器间侧向安全间隔标准
Table 2. Standards for lateral safety interval between six classes of aircraft
航空器
等级侧向安全间隔/m A B C D E F A 2582 3779 3841 3873 3930 4028 B 3779 4836 5229 5445 5580 5643 C 3841 5229 5589 5790 5832 6186 D 3873 5445 5790 5870 5995 6223 E 3930 5580 5832 5995 6103 6252 F 4028 5643 6186 6223 6252 6365 表 3 不同机型组的最小安全间隔
Table 3. Minimum safety distance for different model groups
航空器机型 最小水平安全间隔/m A380 B737-800 A320 Cessna172 DA40 A380 6365 6227 6222 4209 4361 B737-800 6227 6025 6017 3884 4032 A320 6222 6017 6006 6161 3875 Cessna172 4209 3884 3875 1571 1713 DA40 4361 4032 4024 1713 1856 表 4 不同时刻的网络指标值
Table 4. Values of network indicators at different moments
时刻 集聚系数 平均路径长度 网络效率 长轴10 km保护区下的
飞行冲突网络精准保护区下的
飞行冲突网络长轴10 km保护区下的
飞行冲突网络精准保护区下的
飞行冲突网络长轴10 km保护区下的
飞行冲突网络精准保护区下的
飞行冲突网络12:10 0.4378 0.2686 0.7814 0.2578 1.6449 0.1957 12:20 0.4474 0.2793 0.6832 0.2279 1.7390 0.2189 12:30 0.4665 0.2969 0.5558 0.2360 1.3204 0.2286 12:40 0.4088 0.2329 0.6518 0.1788 1.4386 0.2310 -
[1] International Civil Aviation Organization. Global air traffic management operational concept: Doc 9854 AN/458[R]. Montreal: International Civil Aviation Organization, 2005. [2] BENTRUP L. Free routing airspace in Europe implementation concepts and benefits for airspace users[J]. International Conference on Research in Air Transportation, 2016: 1-32. [3] 陈雨童, 胡明华, 杨磊, 等. 受限航路空域自主航迹规划与冲突管理技术[J]. 航空学报, 2020, 41(9): 324045.CHEN Y T, HU M H, YANG L, et al. Autonomous trajectory planning and conflict management technology in restricted airspace[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 324045(in Chinese). [4] 赵嶷飞, 王梦琦. 空中交通工程学理论内涵与关键科学技术[J]. 航空学报, 2022, 43(12): 026537.ZHAO Y F, WANG M Q. Important theories and critical scientific technology of air traffic engineering[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 026537(in Chinese). [5] SCHMIDT D K. On modeling ATC work load and sector capacity[J]. Journal of Aircraft, 1976, 13(7): 531-537. doi: 10.2514/3.44541 [6] DELAHAYE D, PUECHMOREL S, HANSMAN J, et al. Air traffic complexity map based on non linear dynamical systems[J]. Air Traffic Control Quarterly, 2004, 12(4): 367-388. doi: 10.2514/atcq.12.4.367 [7] 张进, 胡明华, 张晨, 等. 空域复杂性建模[J]. 南京航空航天大学学报, 2010, 42(4): 454-460. doi: 10.3969/j.issn.1005-2615.2010.04.011ZHANG J, HU M H, ZHANG C, et al. Airspace complexity modeling[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(4): 454-460(in Chinese). doi: 10.3969/j.issn.1005-2615.2010.04.011 [8] 叶博嘉, 胡明华, 张晨, 等. 基于交通结构的空中交通复杂性建模[J]. 交通运输系统工程与信息, 2012, 12(1): 166-172. doi: 10.3969/j.issn.1009-6744.2012.01.025YE B J, HU M H, ZHANG C, et al. Traffic structure-based air traffic complexity modeling[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(1): 166-172(in Chinese). doi: 10.3969/j.issn.1009-6744.2012.01.025 [9] 王红勇, 赵嶷飞, 温瑞英. 基于复杂网络的空中交通复杂性度量方法[J]. 系统工程, 2014, 32(3): 112-118.WANG H Y, ZHAO Y F, WEN R Y. Air traffic complexity metrics based on complex networks[J]. Systems Engineering, 2014, 32(3): 112-118(in Chinese). [10] WANG H Y, WEN R Y, ZHAO Y F. Analysis of topological characteristics in air traffic situation networks[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(13): 2497-2505. doi: 10.1177/0954410015578482 [11] WANG H Y, SONG Z Q, WEN R Y, et al. Study on evolution characteristics of air traffic situation complexity based on complex network theory[J]. Aerospace Science and Technology, 2016, 58: 518-528. doi: 10.1016/j.ast.2016.09.016 [12] JIANG X R, WEN X X, WU M G, et al. A complex network analysis approach for identifying air traffic congestion based on independent component analysis[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 523: 364-381. doi: 10.1016/j.physa.2019.01.129 [13] 吴明功, 王泽坤, 甘旭升, 等. 基于复杂网络理论的关键飞行冲突点识别[J]. 西北工业大学学报, 2020, 38(2): 279-287. doi: 10.3969/j.issn.1000-2758.2020.02.007WU M G, WANG Z K, GAN X S, et al. Identification of key flight conflict nodes based on complex network theory[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 279-287(in Chinese). doi: 10.3969/j.issn.1000-2758.2020.02.007 [14] 吴明功, 叶泽龙, 温祥西, 等. 基于复杂网络的空中交通复杂性识别方法[J]. 北京航空航天大学学报, 2020, 46(5): 839-850.WU M G, YE Z L, WEN X X, et al. Air traffic complexity recognition method based on complex networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 839-850(in Chinese). [15] 毕可心, 吴明功, 张文斌, 等. 基于速度障碍法的飞行冲突网络建模与分析[J]. 系统工程与电子技术, 2021, 43(8): 2163-2173. doi: 10.12305/j.issn.1001-506X.2021.08.18BI K X, WU M G, ZHANG W B, et al. Modeling and analysis of flight conflict network based on velocity obstacle method[J]. Systems Engineering and Electronics, 2021, 43(8): 2163-2173(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.08.18 [16] ERZBERGER H, PAIELLI R, ISAACSON D. Conflict detection and resolution in the presence of prediction error[C]//Proceeding of the 1st USA/Europe Air Traffic Management R&D Seminar. Washington, D.C.: NASA, 1997: 1-15. [17] 中华人民共和国国务院. 中华人民共和国飞行基本规则[S]. 北京:中华人民共和国国务院,2007.The State Council the People’s Republic of China. Flight basic rules of the People’s Republic of China[S]. Beijing: The State Council the People’s Republic of China, 2007(in Chinese). [18] MOEK G, LUTZ E, MOSBERG W. Risk assessment of RNP 10 and RVSM in the south Atlantic flight identification regions: 21401-7465[R]. Annapolis: ARINC, 2001. [19] 王欣, 徐肖豪. 空中飞机侧向间隔标准的初步研究[J]. 中国民航学院学报(综合版), 2001, 19(1): 1-5.WANG X, XU X H. Study of lateral separation in air traffic control[J]. Journal of Civil Aviation University of China, 2001, 19(1): 1-5(in Chinese). [20] 张兆宁, 时瑞军. 自由飞行下基于冲突解脱的碰撞风险模型研究[J]. 安全与环境工程, 2016, 23(2): 157-161.ZHANG Z N, SHI R J. Study on free flight collision risk model based on conflict resolution[J]. Safety and Environmental Engineering, 2016, 23(2): 157-161(in Chinese). [21] International Givil Aviation Organization. Convention on international civil aviation: Doc T300[S]. Montreal: International Givil Aviation Organization, 2006. -