Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Trans-Attention的飞行区航空器监视数据融合方法

王兴隆 尹昊 丁俊峰

贾明, 杨功流. 基于约束线图的超导重力梯度敏感结构型综合[J]. 北京航空航天大学学报, 2012, 38(12): 1606-1610.
引用本文: 王兴隆,尹昊,丁俊峰. 基于Trans-Attention的飞行区航空器监视数据融合方法[J]. 北京航空航天大学学报,2025,51(4):1215-1223 doi: 10.13700/j.bh.1001-5965.2023.0234
Jia Ming, Yang Gongliu. Type synthesis for sensing mechanism of superconductor gravity gradient based on constraint pattern[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12): 1606-1610. (in Chinese)
Citation: WANG X L,YIN H,DING J F. Aircraft surveillance data fusion method in flight area based on Trans-Attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1215-1223 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0234

基于Trans-Attention的飞行区航空器监视数据融合方法

doi: 10.13700/j.bh.1001-5965.2023.0234
基金项目: 国家自然科学基金面上项目(62173332); 国家自然科学基金重点项目(U2133207);天津多元基金项目(21JCYBJCO0700);中国民航大学校级研究生科研创新项目(2022YJS086)
详细信息
    通讯作者:

    E-mail:xinglong1979@163.com

  • 中图分类号: V351

Aircraft surveillance data fusion method in flight area based on Trans-Attention

Funds: General Program of the National Natural Science Foundation of China (62173332); Key Program of the National Natural Science Foundation of China (U2133207); Diversified Fund Project of Tianjin, China (21JCYBJCO0700); School Level Graduate Research Innovation Project of Civil Aviation University of China (2022YJS086)
More Information
  • 摘要:

    针对飞行区航空器单一监视源存在监视精度低、位置跳变的问题,提出一种基于Transformer和注意力机制的航空器监视数据融合方法。利用Transformer的编码器结构分别对各监视源数据进行特征提取,通过注意力机制对不同监视源赋予权重值,经过全连接网络进行回归计算,获得最终的融合结果。选取场面监视雷达(SMR)和广播式自动相关监视(ADS-B)系统的监视数据作为融合源,多点定位(MLAT)数据作为真实标签,实验结果表明:所提方法有效降低了单一监视源的监视误差,且融合效果优于基于注意力机制的长短期记忆网络、循环神经网络和扩展卡尔曼滤波融合方法,平均绝对误差分别提升了2.81%、16.73%和35.80%。

     

  • 图 1  时间对齐示意图

    Figure 1.  Time alignment diagram

    图 2  Trans-Attention融合模型结构

    Figure 2.  Trans-Attention fusion model structure

    图 3  多头注意力机制结构

    Figure 3.  Multi-head attention mechanism structure

    图 4  航空器直线滑行时模型融合结果

    Figure 4.  Model fusion results during aircraft straight-line taxiing

    图 5  航空器转弯滑行时模型融合结果

    Figure 5.  Model fusion results during aircraft turning and taxiing

    图 6  不同融合方法结果对比

    Figure 6.  Comparison of results of different fusion methods

    表  1  Trans-Attention融合模型参数设置

    Table  1.   Trans-Attention fusion model parameter settings

    学习率 隐藏层
    丢失率
    训练
    轮次
    多头注意
    力个数
    Encode层
    深度
    批量
    大小
    0.001 0.1 600 6 2 048 8
    下载: 导出CSV

    表  2  基于Trans-Attention融合方法结果数据评估

    Table  2.   Data evaluation based on Trans-Attention fusion method results

    数据来源 MSE/m RMSE/m MAE/m
    Trans-Attention 4.2811 2.0691 2.0595
    ADS-B 14.4971 3.8075 4.3479
    SMR1 36.3145 6.0262 8.2769
    SMR2 47.4476 6.8882 10.6579
    下载: 导出CSV

    表  3  EKF融合方法参数设置

    Table  3.   EKF fusion method parameter settings

    参数类型 参数值
    初始化状态协方差矩阵P0 [1.000001.000001.000001.0]
    过程噪声协方差Q0 [0.0001000000.0001000000.00009000000.001000000.001]
    SMR1的测量协方差矩阵R1 [6.250000.00160006.25]
    SMR2的测量协方差矩阵R2 [4.62250000.00090004.6255]
    ADS-B的测量协方差矩阵R3 [2.25002.25]
    下载: 导出CSV

    表  4  RNN融合方法参数设置

    Table  4.   RNN fusion method parameter settings

    学习率 隐藏层丢失率 训练轮次 批量大小 RNN层数
    0.001 0.1 300 8 2
    下载: 导出CSV

    表  5  LSTM-Attention融合方法参数设置

    Table  5.   LSTM-Attention fusion method parameter settings

    学习率 隐藏层丢失率 训练轮次 批量大小 LSTM层数
    0.001 0.1 300 8 2
    下载: 导出CSV

    表  6  不同融合方法结果数据评估

    Table  6.   Data evaluation form for results of different fusion methods

    方法 MSE/m RMSE/m MAE/m
    本文方法 4.2811 2.0691 2.0595
    EKF 9.9745 3.1582 3.2078
    LSTM-Attention 4.3775 2.0922 2.1190
    RNN 4.9697 2.2293 2.4732
    下载: 导出CSV
  • [1] LANZKRON P, BROOKNER E. Solid state X-band airport surface surveillance radar[C]//Proceedings of the IEEE Radar Conference. Piscataway: IEEE Press, 2007: 670-676.
    [2] 卿烈华. 场面监视雷达系统在民用机场的应用[J]. 数字技术与应用, 2018, 36(5): 100-102.

    QING L H. Application of scene surveillance radar system in civil airports[J]. Digital Technology and Application, 2018, 36(5): 100-102(in Chinese).
    [3] 王思达, 段昌淼. 基于ADS-B的场面监视技术探讨[J]. 空运商务, 2018(6): 59-61. doi: 10.3969/j.issn.1671-3095.2018.06.030

    WANG S D, DUAN C M. Discussion on scene monitoring technology based on ADS-B[J]. Air Transport & Business, 2018(6): 59-61(in Chinese). doi: 10.3969/j.issn.1671-3095.2018.06.030
    [4] VASYLIEV V M, VASYLIEV D V, NAUMENKO K V. Using data of multilateration surveillance system for aircraft tracking[C]// Proceedings of the 4th International Conference on Methods and Systems of Navigation and Motion Control. Piscataway: IEEE Press, 2016: 279-283.
    [5] 戴敏. 结合正则化求解的机场场面多点定位方法[J]. 计算机工程与设计, 2021, 42(10): 2995-3001.

    DAI M. Multilateration method for airport surface surveillance based on regularization[J]. Computer Engineering and Design, 2021, 42(10): 2995-3001(in Chinese).
    [6] AKRAM M A, LIU P L, TAHIR M O, et al. A state optimization model based on Kalman filtering and robust estimation theory for fusion of multi-source information in highly non-linear systems[J]. Sensors, 2019, 19(7): 1687. doi: 10.3390/s19071687
    [7] 张学军, 张其善. ATM中的ADS-SSR数据融合研究[J]. 北京航空航天大学学报, 2001, 27(1): 24-27. doi: 10.3969/j.issn.1001-5965.2001.01.007

    ZHANG X J, ZHANG Q S. Data fusion of ADS-SSR in air traffic management[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(1): 24-27(in Chinese). doi: 10.3969/j.issn.1001-5965.2001.01.007
    [8] XIA X, HASHEMI E, XIONG L, et al. Autonomous vehicle kinematics and dynamics synthesis for sideslip angle estimation based on consensus Kalman filter[J]. IEEE Transactions on Control Systems Technology, 2022, 31(1): 179-192.
    [9] 刘康, 何明浩, 韩俊, 等. 基于多传感器的雷达对抗侦察数据融合算法[J]. 系统工程与电子技术, 2023, 45(1): 101-107.

    LIU K, HE M H, HAN J, et al. Data fusion algorithm for radar countermeasures and reconnaissance based on multi-sensor[J]. Systems Engineering and Electronics, 2023, 45(1): 101-107(in Chinese).
    [10] 李素. 基于航迹质量分析的加权平均融合算法[J]. 现代计算机(专业版), 2018, 24(5): 12-15.

    LI S. A weighted average fusion algorithm based on track quality analysis[J]. Modern Computer, 2018, 24(5): 12-15(in Chinese).
    [11] RAJASEKARAN R K, AHMED N, FREW E. Bayesian fusion of unlabeled vision and RF data for aerial tracking of ground targets[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2020: 1629-1636.
    [12] 郭建刚, 陈鹏, 郑伟. 多表冗余惯导数据融合算法及在自对准中的应用[J]. 北京航空航天大学学报, 2020, 46(12): 2211-2216.

    GUO J G, CHEN P, ZHENG W. Data fusion algorithm of multi-sensor redundant inertial navigation and its application in self-alignment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2211-2216(in Chinese).
    [13] 周恩帆, 马俊, 周永杰, 等. 一种D-S证据理论的多传感器数据融合算法[J]. 小型微型计算机系统, 2022, 43(4): 795-800.

    ZHOU E F, MA J, ZHOU Y J, et al. Multi-sensor data fusion algorithm based on D-S evidence theory[J]. Journal of Chinese Computer Systems, 2022, 43(4): 795-800(in Chinese).
    [14] KACZMAREK A, ROHM W, KLINGBEIL L, et al. Experimental 2D extended Kalman filter sensor fusion for low-cost GNSS/IMU/Odometers precise positioning system[J]. Measurement, 2022, 193: 110963. doi: 10.1016/j.measurement.2022.110963
    [15] 宋安宇. 基于RNN的航空监视信息融合技术的研究与实现[D]. 北京: 北京邮电大学, 2019.

    SONG A Y. Research and implementation of aviation surveillance information fusion technology based on RNN[D]. Beijing: Beijing University of Posts and Telecommunications, 2019(in Chinese).
    [16] 孟致远. 基于多神经网络的航空监视信息融合系统的研究与实现[D]. 北京: 北京邮电大学, 2021.

    MENG Z Y. The research and implementation of aviation surveillance information fusion system based on multi neural network[D]. Beijing: Beijing University of Posts and Telecommunications, 2021 (in Chinese).
    [17] 陈建军, 孙俊, 杨予昊, 等. 机场场面监视雷达系统设计[J]. 现代雷达, 2018, 40(12): 11-14.

    CHEN J J, SUN J, YANG Y H, et al. Design of airport surface movement radar system[J]. Modern Radar, 2018, 40(12): 11-14(in Chinese).
    [18] LU Y, HUANG R S, XU Z L. Multi-sensor data fusion based on ADS-B and MLAT in approach[J]. Applied Mechanics and Materials, 2014, 602-605: 2491-2494. doi: 10.4028/www.scientific.net/AMM.602-605.2491
    [19] 闫峰. 浅析北京大兴国际机场多点监视系统[J]. 电脑知识与技术, 2021, 17(21): 136-138.

    YAN F. Analysis of Beijing daxing international airport multipoint surveillance system[J]. Computer Knowledge and Technology, 2021, 17(21): 136-138(in Chinese).
    [20] 牛中伟, 陈健明. 空管场监系统雷达数据格式分析[J]. 信息通信, 2019, 32(1): 156-158.

    NIU Z W, CHEN J M. Analysis of radar data format for air traffic control field supervision system[J]. Information & Communications, 2019, 32(1): 156-158(in Chinese).
    [21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 录用日期:  2023-07-14
  • 网络出版日期:  2023-08-30
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答