Loading [MathJax]/jax/output/SVG/jax.js

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于结构参数分析的Gyroid换热器性能

杨晓军 张雪丽 李沛燃

付永领, 牛建军, 王 岩等 . Stribeck模型模糊整定及其在转台控制中的应用[J]. 北京航空航天大学学报, 2009, 35(6): 701-704.
引用本文: 杨晓军,张雪丽,李沛燃. 基于结构参数分析的Gyroid换热器性能[J]. 北京航空航天大学学报,2025,51(4):1195-1204 doi: 10.13700/j.bh.1001-5965.2023.0245
Fu Yongling, Niu Jianjun, Wang Yanet al. Fuzzy tuning Stribeck model and its application on flight motion simulator control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 701-704. (in Chinese)
Citation: YANG X J,ZHANG X L,LI P R. Performance of Gyroid heat exchanger based on structural parameters analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1195-1204 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0245

基于结构参数分析的Gyroid换热器性能

doi: 10.13700/j.bh.1001-5965.2023.0245
基金项目: 中央高校基本科研业务费专项资金(3122019187)
详细信息
    通讯作者:

    E-mail:zxl982511@163.com

  • 中图分类号: TK124

Performance of Gyroid heat exchanger based on structural parameters analysis

Funds: The Fundamental Research Funds for the Central Universities (3122019187)
More Information
  • 摘要:

    为研究三重周期极小曲面(TPMS)在空气-燃油换热器中的流动换热特性,分析结构参数对换热器性能的影响。采用田口方法,针对壁厚、晶格大小和偏移尺寸3个结构参数,对努塞尔数和摩擦系数进行综合评估,并与参考的螺旋套管(TTHC)换热器性能进行对比。研究得出各个结构参数影响Gyroid换热器努塞尔数和摩擦系数方面的主次顺序,并利用矩阵分析法,确定了最优方案。结果表明:对于热侧出口温度,TTHC换热器比参考的Gyroid换热器最高降低13.13 K;对于压降,TTHC换热器比参考的Gyroid换热器降低3.02 kPa;对于性能评估系数,热侧通道最高为14.72,冷侧通道最高为0.78。

     

  • 图 1  2种不同的换热器结构

    Figure 1.  Two different heat exchanger structures

    图 2  边界设置

    Figure 2.  Boundary setting

    图 3  P=4 MPa正癸烷热物理特性

    Figure 3.  Thermophysical properties of n-decane with P=4 MPa

    图 4  计算域网格剖面图

    Figure 4.  Mesh profile of calculation domain

    图 5  RGP文件准确性验证

    Figure 5.  Verification of RGP file accuracy

    图 6  热侧流体努塞尔数变化

    Figure 6.  Change of Nusselt number in hot-side fluid

    图 7  冷侧流体摩擦系数变化

    Figure 7.  Change of friction coefficient of cold-side fluid

    图 8  努塞尔数的信噪比平均值

    Figure 8.  Average signal to noise ratio of Nusselt numbers

    图 9  结构参数对摩擦系数的信噪比平均值

    Figure 9.  Average signal to noise ratio of structural parameters to friction coefficients

    图 10  不同质量流量下空气出口温度对比

    Figure 10.  Comparison of air outlet temperatures at different mass flow rates

    图 11  不同质量流量下Gyroid换热器温度云图和速度流线图

    Figure 11.  Temperature contour and velocity streamline plot of Gyroid heat exchanger at different mass flow rates

    图 12  不同质量流量下TTHC换热器的速度流线图

    Figure 12.  Velocity streamline of TTHC heat exchanger at different mass flow rates

    图 13  不同质量流量下燃油压降的变化

    Figure 13.  Changes in fuel pressure drop at different mass flow rates

    图 14  不同质量流量下湍流动能分布

    Figure 14.  Distribution of turbulence kinetic energy at different mass flow rates

    表  1  边界条件

    Table  1.   Boundary conditions

    边界 质量流量˙m/(kg·s−1 进口温度Tin/K 出口压力Pout/MPa
    冷侧 0.001,0.002,0.003,0.004 288 4.0
    热侧 0.00510.00530.00560.00590.0061 623 1.0
    下载: 导出CSV

    表  2  结构参数

    Table  2.   Structural parameters

    单元晶格大小/mm 结构偏移量/mm 壁厚/mm
    (5,5,5)
    (7,7,7)
    (8,8,8)
    0.2,0.3,0.4 0.3,0.4,0.5
    下载: 导出CSV

    表  3  网格无关性

    Table  3.   Grid independence

    网格数 努塞尔数 摩擦系数
    2.1×106 141.838 0.0246
    3.1×106 141.842 0.0251
    4.1×106 141.844 0.0253
    5.1×106 141.841 0.0250
    下载: 导出CSV

    表  4  Gyroid换热器的努塞尔数和摩擦系数及对应的信噪比

    Table  4.   Nusselt number and friction coefficient of Gyroid heat exchanger and corresponding signal to noise

    方案 晶格大小/mm 壁厚/mm 偏移尺寸/mm 热侧Nu 冷侧f 信噪比
    Nu f
    1 5 0.3 0.2 10894.77 1.10 80.74 −0.83
    2 5 0.4 0.3 10495.93 1.32 80.42 −2.41
    3 5 0.5 0.4 11117.05 2.25 80.92 −7.04
    4 7 0.3 0.3 12095.37 1.81 81.65 −5.15
    5 7 0.4 0.4 15362.57 1.99 83.73 −5.98
    6 7 0.5 0.2 12527.27 1.64 81.96 −4.30
    7 8 0.3 0.4 13342.29 1.33 82.50 −2.48
    8 8 0.4 0.2 11411.02 1.20 81.15 −1.58
    9 8 0.5 0.3 13540.53 1.35 82.63 −2.61
    下载: 导出CSV

    表  5  各个水平下努塞尔数计算结果和相应的信噪比

    Table  5.   Nusselt number calculation results and corresponding signal to noise at each level

    水平 晶格大小/mm 壁厚/mm 偏移尺寸/mm 信噪比
    晶格大小 壁厚 偏移尺寸
    1 10835.92 12110.81 11611.02 80.69 81.63 81.28
    2 13328.40 12423.17 12043.94 82.45 81.77 81.57
    3 12764.61 12394.95 13273.97 82.09 81.84 82.38
    极差 2492.48 312.36 1662.95 1.76 0.21 1.1
    下载: 导出CSV

    表  6  各个水平下摩擦系数计算结果和相应的信噪比

    Table  6.   Friction coefficient calculation results and corresponding signal to noise at each level

    水平 晶格大小/mm 壁厚/mm 偏移尺寸/mm 信噪比
    晶格大小 壁厚 偏移尺寸
    1 1.56 1.41 1.31 −3.43 −2.82 −2.24
    2 1.81 1.50 1.49 −5.14 −3.32 −3.39
    3 1.29 1.75 1.86 −2.22 −4.65 −5.17
    极差 0.52 0.34 0.55 2.92 1.83 2.93
    下载: 导出CSV

    表  7  冷热通道的性能评估系数

    Table  7.   Performance evoluation coefficient for hot and cold channels

    方案 冷侧性能评估系数 热侧性能评估系数
    1 0.56 11.59
    2 0.55 11.42
    3 0.78 12.10
    4 0.67 11.70
    5 0.73 14.72
    6 0.70 11.93
    7 0.60 10.90
    8 0.74 9.13
    9 0.50 10.65
    下载: 导出CSV
  • [1] VLAHINOS M, O’HARA R. Unlocking advanced heat exchanger design and simulation with nTop platform and ANSYS CFX[EB/OL]. https://www.revolutioninsimulation.org/wp-content/uploads/2020/06/WP_HeatExchangerDesignSimulation.pdf.
    [2] REYNOLDS B W. Simulation of flow and heat transfer in 3D printable triply periodic minimal surface heat exchangers[D]. Christchurch: University of Canterbury, 2020.
    [3] WADSOE I, HOLMQVIST S. Additively manufactured heat exchangers—development and testing[D]. Lund: Lund University , 2020.
    [4] KIM J, YOO D J. 3D printed compact heat exchangers with mathematically defined core structures[J]. Journal of Computational Design and Engineering, 2020, 7(4): 527-550. doi: 10.1093/jcde/qwaa032
    [5] IYER J, MOORE T, NGUYEN D, et al. Heat transfer and pressure drop characteristics of heat exchangers based on triply periodic minimal and periodic nodal surfaces[J]. Applied Thermal Engineering, 2022, 209: 118192. doi: 10.1016/j.applthermaleng.2022.118192
    [6] DIXIT T, AL-HAJRI E, PAUL M C, et al. High performance, microarchitected, compact heat exchanger enabled by 3D printing[J]. Applied Thermal Engineering, 2022, 210: 118339. doi: 10.1016/j.applthermaleng.2022.118339
    [7] DHARMALINGAM L K, AUTE V, LING J Z. Review of triply periodic minimal surface (TPMS) based heat exchanger designs[C]//Proceedings of the 19th International Refrigeration and Air Conditioning Conference at Purdue. West Lafayette : Purdue University, 2022.
    [8] PENG H, GAO F, HU W J. Design, modeling and characterization on triply periodic minimal surface heat exchangers with additive manufacturing[C]//Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium. Austin: University of Texas, 2019, 2325–2337.
    [9] LI W H, YU G P, YU Z B. Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles[J]. Applied Thermal Engineering, 2020, 179: 115686. doi: 10.1016/j.applthermaleng.2020.115686
    [10] LI W G, LI W H, YU Z B. Heat transfer enhancement of water-cooled triply periodic minimal surface heat exchangers[J]. Applied Thermal Engineering, 2022, 217: 119198. doi: 10.1016/j.applthermaleng.2022.119198
    [11] FEMMER T, KUEHNE A J C, WESSLING M. Estimation of the structure dependent performance of 3-D rapid prototyped membranes[J]. Chemical Engineering Journal, 2015, 273: 438-445. doi: 10.1016/j.cej.2015.03.029
    [12] ALTENEIJI M, ALI M I H, KHAN K A, et al. Heat transfer effectiveness characteristics maps for additively manufactured TPMS compact heat exchangers[J]. Energy Storage and Saving, 2022, 1(3): 153-161. doi: 10.1016/j.enss.2022.04.005
    [13] LIANG D, SHI C W, LI W H, et al. Design, flow characteristics and performance evaluation of bioinspired heat exchangers based on triply periodic minimal surfaces[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123620. doi: 10.1016/j.ijheatmasstransfer.2022.123620
    [14] WEN J, HUANG H R, LI H W, et al. Thermal and hydraulic performance of a compact plate finned tube air-fuel heat exchanger for aero-engine[J]. Applied Thermal Engineering, 2017, 126: 920-928. doi: 10.1016/j.applthermaleng.2017.07.103
    [15] LIU P H, WANG R T, LIU S B, et al. Experimental study on the thermal-hydraulic performance of a tube-in-tube helical coil air–fuel heat exchanger for an aero-engine[J]. Energy, 2023, 267: 126626. doi: 10.1016/j.energy.2023.126626
    [16] HERRING N R, HEISTER S D. On the use of wire-coil inserts to augment tube heat transfer[J]. Journal of Enhanced Heat Transfer, 2009, 16(1): 19-34. doi: 10.1615/JEnhHeatTransf.v16.i1.20
    [17] 杜默, 孟宝, 潘丰, 等. 考虑制造约束的印刷电路板式换热器优化设计[J]. 北京航空航天大学学报, 2022, 48(10): 1994-2005.

    DU M, MENG B, PAN F, et al. Optimal design of printed circuit heat exchanger considering manufacturing constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1994-2005(in Chinese).
    [18] TANDEL S, RAMMOHAN S. Design for additive manufacturing of high performance heat exchangers[D]. Hamilton: Mcmaster University, 2022: 77-78.
    [19] JIANG J H, WANG F H, YANG X, et al. Evaluation of the long-term performance of the deep U-type borehole heat exchanger on different geological parameters using the Taguchi method[J]. Journal of Building Engineering, 2022, 59: 105122. doi: 10.1016/j.jobe.2022.105122
    [20] 魏效玲, 薛冰军, 赵强. 基于正交试验设计的多指标优化方法研究[J]. 河北工程大学学报(自然科学版), 2010, 27(3): 95-99.

    WEI X L, XUE B J, ZHAO Q. Optimization design of the stability for the plunger assembly of oil pumps based on multi-target orthogonal test design[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2010, 27(3): 95-99(in Chinese).
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  32
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 录用日期:  2023-10-06
  • 网络出版日期:  2024-10-09
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答