留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合全尺度特征与轨迹修正的遮挡车辆跟踪

郭俊锋 张子华

郭俊锋,张子华. 融合全尺度特征与轨迹修正的遮挡车辆跟踪[J]. 北京航空航天大学学报,2025,51(5):1608-1619 doi: 10.13700/j.bh.1001-5965.2023.0288
引用本文: 郭俊锋,张子华. 融合全尺度特征与轨迹修正的遮挡车辆跟踪[J]. 北京航空航天大学学报,2025,51(5):1608-1619 doi: 10.13700/j.bh.1001-5965.2023.0288
GUO J F,ZHANG Z H. Track obscured vehicles by fusing full-scale features with trajectory correction[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1608-1619 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0288
Citation: GUO J F,ZHANG Z H. Track obscured vehicles by fusing full-scale features with trajectory correction[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1608-1619 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0288

融合全尺度特征与轨迹修正的遮挡车辆跟踪

doi: 10.13700/j.bh.1001-5965.2023.0288
基金项目: 

国家自然科学基金(51465034) 

详细信息
    通讯作者:

    E-mail:zzh15536308429@163.com

  • 中图分类号: TP391

Track obscured vehicles by fusing full-scale features with trajectory correction

Funds: 

National Natural Science Foundation of China (51465034) 

More Information
  • 摘要:

    为改善车辆跟踪过程中因遮挡造成的跟踪漂移及身份切换(IDS)问题,在Deep SORT算法基础上提出一种融合全尺度特征与轨迹修正的遮挡车辆跟踪方法。引入全尺度特征提取网络提取目标不同尺度特征并实现自适应动态融合,增强目标表观特征。提出一种轨迹修正算法对遮挡过程中的跟踪轨迹进行修复,重新更新Kalman滤波参数以减小遮挡过程中累积的线性误差,优化目标运动特征。结合外观特征和运动特征实现遮挡车辆跟踪。通过消融实验与可视化分析验证所提方法的可行性,在KITTI数据集上的实验结果表明:与现有典型方法相比,所提方法取得最高综合得分为78.13%和最低的IDS次数为192,有效改善遮挡车辆跟踪中的IDS问题,提高车辆跟踪鲁棒性。

     

  • 图 1  Kalman滤波示例

    Figure 1.  Kalman filter example

    图 2  不同车辆外观特征

    Figure 2.  Different vehicle appearance features

    图 3  FSNet示意图

    Figure 3.  Schematic diagram of FSNet

    图 4  全尺度特征提取网络结构

    Figure 4.  FSNet structure

    图 5  目标不同时刻参数更新

    Figure 5.  Target parameter update at different moments

    图 6  轨迹修正示意图

    Figure 6.  Schematic diagram of trajectory correction

    图 7  遮挡车辆跟踪流程

    Figure 7.  Obscured vehicle tracking process

    图 8  不同算法的成功率曲线

    Figure 8.  Success rate curves of different algorithms

    图 9  不同输入下车辆特征注意力热图

    Figure 9.  Heat map of vehicle feature attention with different inputs

    图 10  KITTI数据集场景车辆特征热力图

    Figure 10.  Heat map of vehicle characteristics for dataset scenarios of the KITTI

    图 11  车辆跟踪轨迹

    Figure 11.  Vehicle tracking trajectory

    图 12  不同算法跟踪结果对比

    Figure 12.  Comparison of tracking results of different algorithms

    图 13  真实道路场景跟踪结果

    Figure 13.  Real road scene tracking results

    表  1  全尺度特征提取网络架构

    Table  1.   FSNet architecture

    输出(h×w×c 操作
    conv1 128×64×64
    64×32×64
    7×7 conv,stride 2
    3×3 max pooling,stride 2
    conv2 64×32×256 bottleneck×2
    transition 64×32×256
    32×16×256
    1×1 conv
    2×2 average pooling,stride 2
    conv3 32×16×384 bottleneck×2
    transition 32×16×384
    16×8×384
    1×1 conv
    2×2 average pooling,stride 2
    conv4 16×8×512 bottleneck×2
    conv5 16×8×512 1×1 conv
    gap 1×1×512 global average pooling
    下载: 导出CSV

    表  2  全尺度特征提取网络训练参数

    Table  2.   FSNet training parameters

    训练轮次 批处理大小 初始学习率 权重衰减系数
    350 64 0.065 0.0005
    下载: 导出CSV

    表  3  消融实验

    Table  3.   Ablation experimental

    模型 FSNet TCA MOTA/% ASSA/% HOTA/%
    A 87.37 73.59 72.18
    B 89.33 73.77 75.42
    C 87.31 77.89 75.11
    D 90.81 78.27 78.13
    下载: 导出CSV

    表  4  不同算法在KITTI数据集测试结果

    Table  4.   Test results of different algorithms on KITTI dataset

    算法 MOTA/% ASSA/% HOTA/% IDS次数 FPS
    Deep SORT 87.37 73.59 74.02 334 34.51
    PermaTrack 90.85 77.66 77.42 275 11.86
    OC SORT 90.28 76.39 76.54 250 29.04
    StrongSORT 90.35 78.20 77.75 240 7.09
    ByteTrack 90.43 76.14 76.60 361 29.63
    BOT-SORT 90.72 78.19 77.95 248 6.58
    本文方法 90.81 78.27 78.13 192 17.84
    下载: 导出CSV
  • [1] PARK Y, DANG L M, LEE S, et al. Multiple object tracking in deep learning approaches: a survey[J]. Electronics, 2021, 10(19): 2406. doi: 10.3390/electronics10192406
    [2] LUO W H, XING J L, MILAN A, et al. Multiple object tracking: a literature review[J]. Artificial Intelligence, 2021, 293: 103448. doi: 10.1016/j.artint.2020.103448
    [3] 周雪, 梁超, 何均洋, 等. 一体化多目标跟踪算法研究综述[J]. 电子科技大学学报, 2022, 51(5): 728-736. doi: 10.12178/1001-0548.2021349

    ZHOU X, LIANG C, HE J Y, et al. A survey on one-shot multi-object tracking algorithm[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(5): 728-736(in Chinese). doi: 10.12178/1001-0548.2021349
    [4] 韩瑞泽, 冯伟, 郭青, 等. 视频单目标跟踪研究进展综述[J]. 计算机学报, 2022, 45(9): 1877-1907. doi: 10.11897/SP.J.1016.2022.01877

    HAN R Z, FENG W, GUO Q, et al. Single object tracking research: a survey[J]. Chinese Journal of Computers, 2022, 45(9): 1877-1907(in Chinese). doi: 10.11897/SP.J.1016.2022.01877
    [5] DENDORFER P, OŠEP A, MILAN A, et al. MOTChallenge: a benchmark for single-camera multiple target tracking[J]. International Journal of Computer Vision, 2021, 129(4): 845-881. doi: 10.1007/s11263-020-01393-0
    [6] CIAPARRONE G, LUQUE SÁNCHEZ F, TABIK S, et al. Deep learning in video multi-object tracking: a survey[J]. Neurocomputing, 2020, 381: 61-88. doi: 10.1016/j.neucom.2019.11.023
    [7] EMAMI P, PARDALOS P M, ELEFTERIADOU L, et al. Machine learning methods for data association in multi-object tracking[J]. ACM Computing Surveys, 2020, 53(4): 1-34.
    [8] BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2016: 3464-3468.
    [9] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2017: 3645-3649.
    [10] DU Y H, ZHAO Z C, SONG Y, et al. StrongSORT: make DeepSORT great again[J]. IEEE Transactions on Multimedia, 2023, 25: 8725-8737. doi: 10.1109/TMM.2023.3240881
    [11] CAO J K, PANG J M, WENG X S, et al. Observation-centric SORT: rethinking SORT for robust multi-object tracking[EB/OL]. (2023-03-16)[2023-03-20]. https://arxiv.org/abs/2203.14360v3.
    [12] MAGGIOLINO G, AHMAD A, CAO J K, et al. Deep OC-sort: multi-pedestrian tracking by adaptive re-identification[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2023: 3025-3029.
    [13] AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: robust associations multi-pedestrian tracking[EB/OL]. (2022-07-07)[2023-03-20]. https://arxiv.org/abs/2206.14651v2.
    [14] SEIDENSCHWARZ J, BRASÓ G, SERRANO V C, et al. Simple cues lead to a strong multi-object tracker[EB/OL]. (2022-06-09)[2023-03-20]. https://arxiv.org/abs/2206.04656v7.
    [15] YANG F, ODASHIMA S, MASUI S, et al. Hard to track objects with irregular motions and similar appearances? make it easier by buffering the matching space[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2023: 4788-4797.
    [16] 马永杰, 马芸婷, 程时升, 等. 基于改进YOLOv3模型与Deep-SORT算法的道路车辆检测方法[J]. 交通运输工程学报, 2021, 21(2): 222-231.

    MA Y J, MA Y T, CHENG S S, et al. Road vehicle detection method based on improved YOLOv3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231(in Chinese).
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  39
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 录用日期:  2023-07-28
  • 网络出版日期:  2023-09-01
  • 整期出版日期:  2025-05-31

目录

    /

    返回文章
    返回
    常见问答