-
摘要:
冰晶在压气机内部发生融化,容易造成叶片结冰,深入分析冰晶融化特性对研究压气机冰晶结冰规律具有重要意义。基于压气机一维气动特性,提出一种冰晶融化率的快速计算方法,并进行验证。以某大涵道比涡扇发动机的低压压气机为研究对象,分析冰晶粒径和环境温度对等粒径球形冰晶融化特性的影响。结果表明:冰晶粒径增加导致冰晶融化的起始位置有向低压压气机后面级移动的趋势,冰晶粒径减小或环境温度增加导致冰晶融化速率增大。在此基础上突破等粒径球形冰晶假设,分别考虑冰晶形状和粒径分布,并分析非球形冰晶的球形度和球形冰晶的粒径分布对冰晶融化特性的影响。结果表明:球形度在一定范围内对冰晶融化率有影响,当球形度在0.710~0.958之间时,随着球形度的增大,冰晶融化率减小;相比球形度,非球形冰晶的等效直径对冰晶融化率的影响更为显著;当冰晶的平均体积直径(MVD)不变时,粒径分布的不同导致压气机内同一位置的冰晶融化率偏差最大可达0.205;对于MVD相同而变异系数不同的粒径分布,其融化特性曲线前半部分由小粒径组分冰晶的融化占主导,变异系数较大的分布对应的融化率相对较高,后半部分由大粒径组分冰晶的融化占主导,变异系数较小的分布对应的融化率相对较高。
Abstract:The melting of ice crystals in the compressor leads to ice formation on the blades. It is of great significance to analyze the ice crystal melting characteristics to study the ice crystal icing in the compressor. Based on the one-dimensional aerodynamic characteristics of the compressor, a rapid method for calculating the ice crystal melting ratio was developed and validated. A low-pressure compressor of a turbofan engine with a large bypass ratio was selected to study the influence of ice crystal size and ambient temperature on the ice crystal melting characteristics at the same particle size. The results show that the initial position of ice crystal melting tends to move to the rear stage of the low-pressure compressor with the increase in ice crystal size, and the decrease in ice crystal size or the increase in ambient temperature leads to the increase in ice crystal melting ratio. On this basis, the hypothesis of spherical ice crystals with equal particle size is broken through, and the influence of sphericity of non-spherical ice crystals and the particle size distribution of spherical ice crystal on the melting characteristics were analyzed by considering ice crystal shape and particle size distribution. The results demonstrate that the sphericity has an effect on the ice crystal melting ratio within a certain range. When the sphericity is between 0.710 and 0.958, the ice crystal melting ratio decreases with the increase in sphericity. Compared with the sphericity, the equivalent diameter of non-spherical ice crystals has a more significant effect on the ice crystal melting ratio. When the mean volume diameter (MVD) of the ice crystal is constant, the difference in particle size distribution leads to the maximum deviation of 20.5% in the ice crystal melting ratio at the same position in the compressor. For the particle size distributions with the same MVD but different coefficients of variation, in the front half of the ice crystal melting characteristic curve, the melting of small-sized ice crystals is dominant, and the particle size distribution with a larger coefficient of variation has a relatively higher melting ratio. However, in the latter part, the melting of large-sized ice crystals is dominant, and the particle size distribution with a smaller coefficient of variation has a relatively higher melting ratio.
-
Key words:
- compressor /
- melting characteristic /
- ice crystal melting ratio /
- sphericity /
- Langmuir distribution
-
表 1 巡航阶段计算工况
Table 1. Cases for cruising phase
工况 H /m T /K d /μm IWC/(g·m−3) CP01 10700 ISA +10 3 2 CP02 10700 ISA +10 5 2 CP03 10700 ISA +10 8 2 CP04 10700 ISA +10 11 2 CP05 10700 ISA +10 25 2 CP06 10700 ISA +20 3 2 CP07 10700 ISA +20 5 2 CP08 10700 ISA +20 8 2 CP09 10700 ISA +20 11 2 CP10 10700 ISA +20 25 2 表 2 下降阶段计算工况
Table 2. Cases for descent phase
工况 H/m T/K d/μm IWC/(g·m−3) DP01 4700 ISA +10 3 2 DP02 4700 ISA +10 5 2 DP03 4700 ISA +10 8 2 DP04 4700 ISA +10 11 2 DP05 4700 ISA +10 25 2 DP06 4700 ISA +20 3 2 DP07 4700 ISA +20 5 2 DP08 4700 ISA +20 8 2 DP09 4700 ISA +20 11 2 DP10 4700 ISA +20 25 2 表 3 不同球形度计算工况
Table 3. Cases for different sphericities
工况 a/μm b/μm E dp /μm Φ Φ⊥ NS5-1 5.724 5.724 1 5.724 1 NS5-2 7.5 2.22 0.296 5.724 0.958 0.582 NS5-3 10 1.25 0.125 5.724 0.915 0.327 NS5-4 15 0.555 0.037 5.724 0.710 0.145 NS5-5 20 0.3125 0.015 5.724 0.555 0.081 NS8-1 8.013 8.013 1 8.013 1 NS8-2 10.5 3.11 0.296 8.013 0.958 0.582 NS8-3 14 1.75 0.125 8.013 0.915 0.327 NS8-4 21 0.777 0.037 8.013 0.710 0.145 NS8-5 28 0.4375 0.015 8.013 0.555 0.081 NS11-1 11.447 11.447 1 11.447 1 NS11-2 15 4.44 0.296 11.447 0.958 0.582 NS11-3 20 2.5 0.125 11.447 0.915 0.327 NS11-4 30 1.11 0.037 11.447 0.710 0.145 NS11-5 40 0.625 0.015 11.447 0.555 0.081 表 4 不同纵横比计算工况
Table 4. Cases for different aspect ratios
工况 a/μm b/μm E dp/μm Φ Φ⊥ NS1 3 0.5 0.17 3.3471 0.956 0.397 NS2 3 1.0 0.33 4.5428 0.909 0.630 NS3 3 3.0 1.0 5.7235 0.763 1.029 NS4 3 4.5 1.5 6.5518 0.655 0.899 NS5 3 6.0 2.0 7.2112 0.577 0.816 NS6 3 9.0 3.0 8.2548 0.472 0.713 NS7 3 18.0 6.0 10.4004 0.320 0.566 表 5 MVD=7 μm的Langmuir分布
Table 5. Langmuir distributions for MVD = 7 μm
占比/% 粒径/μm B分布 C分布 D分布 E分布 5 3.92 2.94 2.17 1.61 10 5.04 4.27 3.64 3.08 20 5.88 5.39 4.97 4.55 30 7.00 7.00 7.00 7.00 20 8.19 8.82 9.59 10.36 10 9.24 10.57 12.18 14 5 10.43 12.67 15.54 18.97 表 6 Langmuir分布的变异系数
Table 6. Coefficient of variation for Langmuir distribution
B分布 C分布 D分布 E分布 0.22 0.33 0.46 0.61 表 7 MVD =5 μm的Langmuir分布
Table 7. Langmuir distributions for MVD = 5 μm
占比/% 粒径/μm B分布 C分布 D分布 E分布 5 2.8 2.1 1.55 1.15 10 3.6 3.05 2.6 2.2 20 4.2 3.85 3.55 3.25 30 5 5 5 5 20 5.85 6.3 6.85 7.4 10 6.6 7.55 8.7 10 5 7.45 9.05 11.1 13.55 表 8 MVD =10 μm的Langmuir分布
Table 8. Langmuir distributions for MVD = 10 μm
占比/% 粒径/μm B分布 C分布 D分布 E分布 5 5.6 4.2 3.1 2.3 10 7.2 6.1 5.2 4.4 20 8.4 7.7 7.1 6.5 30 10 10 10 10 20 11.7 12.6 13.7 14.8 10 13.2 15.1 17.4 20 5 14.9 18.1 22.2 27.1 表 9 MVD =15 μm的Langmuir分布
Table 9. Langmuir distributions for MVD = 15 μm
占比/% 粒径/μm B分布 C分布 D分布 E分布 5 8.4 6.3 4.65 3.45 10 10.8 9.15 7.8 6.6 20 12.6 11.55 10.65 9.75 30 15 15 15 15 20 17.55 18.9 20.55 22.2 10 19.8 22.65 26.1 30 5 22.35 27.15 33.3 40.65 -
[1] HRADECKY S. Incidents and news in aviation [EB/OL]. (2013-07-31)[2023-02-01]. https://avherald.com/h?article=46679ba1&opt=0. [2] BRAVIN M, STRAPP J W, MASON J. An investigation into location and convective lifecycle trends in an ice crystal icing engine event database[C]//Proceedings of the SAE International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2015. [3] 沈浩, 韩冰冰, 张丽芬. 航空发动机中冰晶结冰的研究进展[J]. 实验流体力学, 2020, 34(6): 1-7. doi: 10.11729/syltlx20190124SHEN H, HAN B B, ZHANG L F. Research progress of the ice crystal icing in aero-engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 1-7(in Chinese). doi: 10.11729/syltlx20190124 [4] 袁庆浩, 樊江, 白广忱. 航空发动机内部冰晶结冰研究综述[J]. 推进技术, 2018, 39(12): 2641-2650.YUAN Q H, FAN J, BAI G C. Review of ice crystal icing in aero-engines[J]. Journal of Propulsion Technology, 2018, 39(12): 2641-2650(in Chinese). [5] ADDY Jr H E, VERES J P. An overview of NASA engine ice-crystal icing research[C]//Proceedings of the SAE International Conference on Aircraft and Engine Icing and Ground Deicing. Warrendale: SAE International, 2011. [6] DEZITTER F, GRANDIN A, BRENGUIER J L, et al. HAIC-high altitude ice crystals[C]//Proceedings of the 5th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2013. [7] NAGORSKI M, KOCH C, STAUDACHER S. Boundary conditions for compressor cascade ice crystal icing testing[J]. Journal of Turbomachinery, 2021, 143(10): 101013. doi: 10.1115/1.4050945 [8] MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight[C]//Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. [9] MACLEOD J, FULEKI D. Ice crystal accretion test rig development for a compressor transition duct[C]//Proceedings of the AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010. [10] HAUK T, BONACCURSO E, ROISMAN I V, et al. Ice crystal impact onto a dry solid wall. Particle fragmentation[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2181): 20150399 . doi: 10.1098/rspa.2015.0399 [11] VERES J P, JORGENSON P, JONES S M. Modeling of highly instrumented honeywell turbofan engine tested with ice crystal ingestion in the NASA propulsion system laboratory[C]//Proceedings of the 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016. [12] ASHLIE F. Ice crystal icing investigation on a Honeywell uncertified research engine in an altititude simulation icing facility[J]. Journal of Turbomachinery, 2021, 143(10): 1-22. [13] VILLEDIEU P, TRONTIN P, CHAUVIN R. Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite[C]//Proceedings of the 6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014. [14] IULIANO E, MONTREUIL E, NORDE E, et al. Modelling of non-spherical particle evolution for ice crystals simulation with an eulerian approach [C]//Proceedings of the SAE International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2015. [15] NORDE E. Eulerian method for ice crystal icing in turbofan engines [D]. Enschede: University of Twente, 2017. [16] AL-KHALIL K, IRANI E, MILLER D. Mixed phase icing simulation and testing at the cox icing wind tunnel[C]//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. [17] 姜飞飞, 董威, 郑梅, 等. 冰晶在涡扇发动机内相变换热特性[J]. 航空动力学报, 2019, 34(3): 567-575.JIANG F F, DONG W, ZHENG M, et al. Phase change heat transfer characteristic of ice crystal ingested into turbofan engine[J]. Journal of Aerospace Power, 2019, 34(3): 567-575(in Chinese). [18] 谭燕. 基于欧拉方法的2维翼型冰晶结冰数值计算[J]. 航空发动机, 2020, 46(4): 30-35.TAN Y. Numerical calculation of 2D airfoil ice crystal icing based on Euler method[J]. Aeroengine, 2020, 46(4): 30-35(in Chinese). [19] 卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12): 124085. doi: 10.7527/S1000-6893.2020.24085BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124085(in Chinese). doi: 10.7527/S1000-6893.2020.24085 [20] 郭向东, 胡站伟, 丁亮, 等. 大型结冰风洞中冰晶热/力平衡特性数值研究[J]. 航空动力学报, 2022, 37(3): 478-491.GUO X D, HU Z W, DING L, et al. Numerical investigation of thermal and mechanical equilibrium characteristics of ice crystal in large icing wind tunnel[J]. Journal of Aerospace Power, 2022, 37(3): 478-491(in Chinese). [21] 黄平, 卜雪琴, 刘一鸣, 等. 混合相/冰晶条件下的结冰研究综述[J]. 航空学报, 2022, 43(5): 025178.HUANG P, BU X Q, LIU Y M, et al. Mixed phase/glaciated ice accretion: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 025178(in Chinese). [22] 马乙楗, 柴得林, 王强, 等. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报, 2023, 44(1): 35-46.MA Y J, CHAI D L, WANG Q, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 35-46(in Chinese). [23] 王进, 周玲, 季路成. 轴流压气机一维特性计算方法简介及展望[J]. 实验流体力学, 2021, 35(2): 1-12. doi: 10.11729/syltlx20200088WANG J, ZHOU L, JI L C. Brief introduction and prospect of calculation methods for one-dimensional characteristics of axial flow compressor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 1-12(in Chinese). doi: 10.11729/syltlx20200088 [24] WHITE N M, TOURLIDAKIS A, ELDER R L. Axial compressor performance modelling with a quasi-one-dimensional approach[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(2): 181-193. doi: 10.1243/09576500260049197 [25] 张军. 多级轴流压气机方案设计与特性计算研究[D]. 北京: 北京理工大学, 2016.ZHANG J. Study on scheme design and characteristic calculation of multistage axial compressor[D]. Beijing: Beijing Institute of Technology, 2016(in Chinese). [26] 张长生, 王小莉. 轴流压气机设计点流动损失的预估和分析[J]. 航空动力学报, 1993, 8(1): 29-33.ZHANG C S, WANG X L. Estimation of flow loss at design point in an axial-flow compressor[J]. Journal of Aerospace Power, 1993, 8(1): 29-33(in Chinese). [27] CROWE C T, SCHWARZKOPF J D, SOMMERFELD M, et al. Multiphase flows with droplets and particles[M]. Boca Raton: CRC Press, 2011. [28] WRIGHT W, JORGENSON P, VERES J. Mixed phase modeling in GlennICE with application to engine icing[C]//Proceedings of the AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010. [29] OLIVER M. Ice crystal icing engine testing in the NASA Glenn research center’s propulsion systems laboratory: altitude investigation[J]. SAE International Journal of Aerospace, 2015, 8(1): 33-37. doi: 10.4271/2015-01-2156 [30] VERES J, JORGENSON P, WRIGHT W. A model to assess the risk of ice accretion due to ice crystal ingestion in a turbofan engine and its effects on performance[C]//Proceedings of the 4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012. [31] Federal Aviation Administration. Appendix D to Part 33-mixed phase and ice crystal icing envelope (deep convective clouds): 79 FR 65538 [S]. Washington, D.C.: Federal Aviation Administration, 2014: 743–745. [32] PRUPPACHER H R, KLETT J D. Microphysics of clouds and precipitation[M]. Berlin: Springer, 1978. [33] VERES J P, JORGENSON P C E, JONES S M, et al. Modeling of a turbofan engine with ice crystal ingestion in the NASA propulsion system laboratory[C]//Proceedings of the Turbomachinery Technical Conference and Exposition. New York: ASME, 2017. -