留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于部件特性图优化的民航发动机性能退化建模

郭庆 黄启廉 陈金亮

郭庆,黄启廉,陈金亮. 基于部件特性图优化的民航发动机性能退化建模[J]. 北京航空航天大学学报,2025,51(6):1935-1945 doi: 10.13700/j.bh.1001-5965.2023.0341
引用本文: 郭庆,黄启廉,陈金亮. 基于部件特性图优化的民航发动机性能退化建模[J]. 北京航空航天大学学报,2025,51(6):1935-1945 doi: 10.13700/j.bh.1001-5965.2023.0341
GUO Q,HUANG Q L,CHEN J L. Performance degradation modelling of civil aviation engines based on component characteristic map optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1935-1945 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0341
Citation: GUO Q,HUANG Q L,CHEN J L. Performance degradation modelling of civil aviation engines based on component characteristic map optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1935-1945 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0341

基于部件特性图优化的民航发动机性能退化建模

doi: 10.13700/j.bh.1001-5965.2023.0341
基金项目: 

2022年天津市研究生科研创新项目(2022SKY156)

详细信息
    通讯作者:

    E-mail:qguocauc@sina.com

  • 中图分类号: V263.6

Performance degradation modelling of civil aviation engines based on component characteristic map optimization

Funds: 

2022 Tianjin Postgraduate Research Innovation Project (2022SKY156)

More Information
  • 摘要:

    为从单元体层级给出民航发动机气路性能退化的理论依据,以CFM56-3发动机为研究对象,在使用特性图缩放法获取部件特性方程的基础之上,优化了风扇通用特性图缩放基准点的选取过程,提出特性图的曲面拟合方法,构建出稳态工况下符合特定转速条件的发动机部件级基准性能模型。通过引入故障因子生成故障系数矩阵,计算发动机监控参数随部件效率下降的偏离量,并与美国通用电气公司培训手册的指印图资料作对比,验证了融合风扇特性图缩放基准点优化及特性图曲面拟合方法的发动机稳态性能模型在气路性能退化分析中具有较好的精度和使用前景。

     

  • 图 1  特性图缩放法

    Figure 1.  Characteristic map scaling method

    图 2  技术路线图

    Figure 2.  Technology roadmap

    图 3  通用特性图缩放基准点选取

    Figure 3.  Selection of general characteristic map scaling reference point

    图 4  适应度进化曲线

    Figure 4.  Fitness evolution curve

    图 5  CFM56-3发动机风扇特性

    Figure 5.  Fan characteristic of CFM56-3 engine

    图 6  风扇部件特性曲面

    Figure 6.  Fan component characteristic surface

    图 7  CFM56-3发动机气路简化模型

    LPC:低压压气机,HPC:高压压气机,HPT:高压涡轮,LPT:低压涡轮,各数字:发动机的位置,1:进气道入口,2:风扇入口,13:风扇出口,18:外涵喷管出口,22:LPC入口,25:HPC入口,3:HPC五级出口,31:HPC出口,4:燃烧室出口,41:HPT导向器出口,44:HPT出口,43:LPT导向器出口,5:LPT出口,9:内涵喷管出口。

    Figure 7.  Simplified gas path model of CFM56-3 engine

    图 8  监控参数偏离量实验结果

    Figure 8.  Experimental results of monitoring parameter deviation

    表  1  参数信息

    Table  1.   Parameters information

    参数 数值
    涵道比$ {R_{{\mathrm{BPR}}}} $ 5.0245
    气体常数$ R $/(J·(kg·K)−1) 287.0
    燃油热值$ {H_{\text{U}}} $/107 (J·kg−1) 4.277
    低压转子转速$ {N_{1{\text{C}}}} $ 0.9300
    燃烧效率$ {\eta _{\text{B}}} $ 0.9960
    风扇进口空气总温$ T_2^* $/K 244.14
    风扇进口空气总压$ P_2^* $/104 Pa 3.4615
    国际标准大气总温$ T_{{\text{ISA}}}^* $/K 288.15
    国际标准大气总压$ P_{{\text{ISA}}}^* $/105 Pa 1.01325
    高压涡轮轴机械效率$ {\eta _{{\text{MH}}}} $ 0.99
    低压涡轮轴机械效率$ {\eta _{{\text{ML}}}} $ 1.00
    进气道总压恢复系数$ {\sigma _{\text{I}}} $ 0.99
    中介机匣总压恢复系数$ {\sigma _{24}} $ 0.98
    HPT转子轴承冷却空气比例$ {\nu _{{\text{CHR}}}} $ 0.05
    HPT进口导向叶片冷却空气比例$ {\nu _{{\text{CHN}}}} $ 0.06
    LPT进口导向叶片冷却空气比例$ {\nu _{{\text{CLN}}}} $ 0.02
    下载: 导出CSV

    表  2  CFM56-3发动机参数基准值

    Table  2.   Parameter reference values of CFM56-3 engine

    参数 基准值 参数 基准值
    $ T_{13}^* $/K 286.8200 $ {W_{\text{F}}} $/(kg·s−1) 0.3800
    $ T_{25}^* $/K 317.2400 $ {W_4} $/(kg·s−1) 17.5076
    $ T_3^* $/K 663.3500 $ {W_{41}} $/(kg·s−1) 18.6934
    $ T_4^* $/K 1345.7188 $ {W_{44}} $/(kg·s−1) 19.6801
    $ T_{41}^* $/K 1305.8580 $ {W_{45}} $/(kg·s−1) 20.0752
    $ T_{43}^* $/K 991.8628 $ {\pi _{{\text{Fan}}}} $ 1.6600
    $ T_{44}^* $/K 976.2153 $ {\pi _{{\text{LPC}}}} $ 2.2480
    $ T_{45}^* $/K 967.7159 $ {\pi _{{\text{HPC}}}} $ 10.7020
    $ T_5^* $/K 717.9947 $ {\pi _{{\text{HPT}}}} $ 4.2566
    $ {W_{13}} $/(kg·s−1) 99.1820 $ {\pi _{{\text{LPT}}}} $ 3.8993
    $ {W_2} $/(kg·s−1) 118.9210 $ {\eta _{{\text{Fan}}}} $ 0.8931
    $ {W_{2{\text{Rstd}}}} $/(kg·s−1) 320.4200 $ {\eta _{{\text{LPC}}}} $ 0.8700
    $ {W_{22}} $/(kg·s−1) 19.7396 $ {\eta _{{\text{HPC}}}} $ 0.8616
    $ {W_{22{\text{Rstd}}}} $/(kg·s−1) 53.1860 $ {\eta _{{\text{HPT}}}} $ 0.8215
    $ {W_{25{\text{Rstd}}}} $/(kg·s−1) 27.4870 $ {\eta _{{\text{LPT}}}} $ 0.8860
    $ {W_3} $/(kg·s−1) 19.3450 $ {N_{2{\text{C}}}} $ 0.9099
    $ {W_{31}} $/(kg·s−1) 17.1747 $ T_{{\mathrm{EGT}}}^* $/K 891.6017
    下载: 导出CSV

    表  3  不同监控参数偏离量和故障因子下的故障系数

    Table  3.   Fault coefficients under different monitoring parameter deviations and fault factors

    监控参数偏移 故障系数aij/%
    $ \delta {\tilde W_{2{\text{Rstd}}}} $ $ \delta {\tilde \eta _{{\text{Fan}}}} $ $ \delta {\tilde W_{22{\text{Rstd}}}} $ $ \delta {\tilde \eta _{{\text{LPC}}}} $ $ \delta {\tilde W_{25{\text{Rstd}}}} $ $ \delta {\tilde \eta _{{\text{HPC}}}} $ $ \delta {\tilde \eta _{{\text{HPT}}}} $ $ \delta {\tilde \eta _{{\text{LPT}}}} $
    $ \delta T_{13}^* $ −0.32 0.15 0.02 0 −0.01 0.02 0.03 −0.01
    $ \delta T_{25}^* $ 0.21 −0.06 −0.39 0.23 −0.03 0.15 0.19 −0.09
    $ \delta T_3^* $ −0.63 0.21 −0.06 0.25 0.07 0.24 −0.37 0.31
    $ \delta T_4^* $ −0.99 0.71 0.19 0.40 −0.11 0.80 0.64 0.76
    $ \delta T_{41}^* $ −0.98 0.69 0.18 0.39 −0.11 0.79 0.61 0.74
    $ \delta T_{43}^* $ −0.93 0.80 0.19 0.45 −0.20 0.99 1.17 0.81
    $ \delta T_{44}^* $ −0.92 0.78 0.18 0.44 −0.19 0.97 1.12 0.79
    $ \delta T_{45}^* $ −0.92 0.78 0.18 0.44 −0.19 0.97 1.11 0.79
    $ \delta T_5^* $ −0.88 0.93 0.20 0.51 −0.22 1.07 1.20 1.29
    $ \delta {\pi _{{\text{Fan}}}} $ −0.96 0 0.06 0 0 0.06 0.12 0
    $ \delta {\pi _{{\text{LPC}}}} $ 1.16 −0.40 −1.47 0.04 −0.13 0.80 1.02 −0.58
    $ \delta {\pi _{{\text{HPC}}}} $ −2.79 0.92 1.00 0.07 0.28 −1.28 −1.77 1.32
    $ \delta {\pi _{{\text{HPT}}}} $ −0.40 −0.52 −0.02 −0.24 0.15 −0.31 −0.36 −0.27
    $ \delta {\pi _{{\text{LPT}}}} $ −0.31 −0.66 −0.06 −0.30 0.12 −0.30 −0.17 −0.55
    $ \delta {W_{\text{F}}} $ −2.30 1.43 −0.20 0.50 −0.14 0.57 0.55 1.56
    $ \delta {N_{2{\text{C}}}} $ −1.19 0.39 0.27 0.16 0.79 −0.82 −1.04 0.56
    $ T_{\mathrm{ EGT}} $ −0.91 0.80 0.18 0.45 −0.20 0.98 1.13 0.87
    下载: 导出CSV

    表  4  监控参数偏离量比例关系

    Table  4.   Proportional relationship of monitoring parameters deviation

    监控参数
    偏离量比例关系
    $ \delta T_{\mathrm{EGT}}:\delta W_{\text{F}}:\delta N_{2\text{C}} $
    实验 指印图
    −1% ηPAN 1:0.20:0.05 1:0.22:0.12
    −1% ηLPC 1:0.12:0.04 1:0.10:0.03
    −1% ηHPC 1:0.06:−0.09 1:0.10:−0.13
    −1% ηHPT 1:0.06:−0.10 1:0.10:−0.13
    −1% ηLPT 1:0.20:0.07 1:0.21:0.10
    下载: 导出CSV
  • [1] 中国民用航空局. 2021年民航行业发展统计公报[EB/OL]. (2022-05-18)[2023-05-30]. http://www.caac.gov.cn/XXGK/XXGK/TJSJ/202205/t20220518_213297.html.

    Civil Aviation Administration of China. Statistical bulletin on the development of civil aviation industry in 2021[EB/OL]. (2022-05-18)[2023-05-30]. http://www.caac.gov.cn/XXGK/XXGK/TJSJ/202205/t20220518_213297.html(in Chinese).
    [2] 林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565.

    LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 626565(in Chinese).
    [3] 李少尘, 陈敏, 胡金涛, 等. 航空燃气涡轮发动机气路故障诊断进展[J]. 航空发动机, 2022, 48(2): 33-49.

    LI S C, CHEN M, HU J T, et al. A review of research progress on aircraft gas turbine engines gas path fault diagnosis[J]. Aeroengine, 2022, 48(2): 33-49(in Chinese).
    [4] SAJTEEV A M. Gas turbine diagnostics based on gas path analysis[D]. Netherlands: Delft University of Technology, 2015: 19-29.
    [5] URBAN L A. Gas path analysis applied to turbine engine condition monitoring[J]. Journal of Aircraft, 1973, 10(7): 400-406. doi: 10.2514/3.60240
    [6] URBAN L A, VOLPONI A J. Mathematical methods of relative engine performance diagnostics[C]//Proceedings of the Aerospace Technology Conference and Exposition. Warrendale: SAE International, 1992: 922048.
    [7] 范作民, 孙春林, 林兆福. 发动机故障诊断的主因子模型[J]. 航空学报, 1993, 14(12): 588-595. doi: 10.3321/j.issn:1000-6893.1993.12.008

    FAN Z M, SUN C L, LIN Z F. Primary factor model for jet engine fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(12): 588-595(in Chinese). doi: 10.3321/j.issn:1000-6893.1993.12.008
    [8] 范作民, 孙春林, 白杰. 航空发动机故障诊断导论[M]. 北京: 科学出版社, 2004: 2-45.

    FAN Z M, SUN C L, BAI J. Introduction to aeroengine fault diagnosis[M]. Beijing: Science Press, 2004: 2-45(in Chinese).
    [9] STAMATIS A, MATHIOUDAKIS K, PAPAILIOU K D. Adaptive simulation of gas turbine performance[J]. Journal of Engineering for Gas Turbines and Power, 1990, 112(2): 168-175. doi: 10.1115/1.2906157
    [10] 黄金泉, 王启航, 鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报, 2020, 52(4): 507-522.

    HUANG J Q, WANG Q H, LU F. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(4): 507-522(in Chinese).
    [11] 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9): 625573.

    CAO M, HUANG J Q, ZHOU J, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅰ: diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625573(in Chinese).
    [12] 骆广琦, 桑增产, 王如根, 等. 航空燃气涡轮发动机数值仿真[M]. 北京: 国防工业出版社, 2007: 49-51.

    LUO G Q, SANG Z C, WANG R G, et al. Numerical methods for aviation gas turbine engine simulation[M]. Beijing: National Defense Industry Press, 2007: 49-51(in Chinese).
    [13] 李书明, 王泽芃, 孙爽, 等. 基于贝兹曲线的压气机特性图生成方法[J]. 科学技术与工程, 2021, 21(33): 14428-14433. doi: 10.3969/j.issn.1671-1815.2021.33.054

    LI S M, WANG Z P, SUN S, et al. Compressor engine component maps generating method based on Bézier curve[J]. Science Technology and Engineering, 2021, 21(33): 14428-14433(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.33.054
    [14] 黄开明, LI Y G, 张伟, 等. 某型涡轴发动机性能衰减与部件退化评估[J]. 航空动力学报, 2015, 30(11): 2673-2679.

    HUANG K M, LI Y G, ZHANG W, et al. Performance degradation and components deterioration degree estimation for a turboshaft engine[J]. Journal of Aerospace Power, 2015, 30(11): 2673-2679(in Chinese).
    [15] 张冬阳. 压气机特性的系数拟合法[J]. 燃气轮机技术, 1993, 6(3): 27-32.

    ZHANG D Y. Coefficient fitting method for compressor characteristics[J]. Gas Turbine Technology, 1993, 6(3): 27-32(in Chinese).
    [16] 欧阳辉, 朱之丽. 某涡喷发动机数值建模与改型设计[J]. 北京航空航天大学学报, 2008, 34(3): 311-314.

    OUYANG H, ZHU Z L. Modeling and retrofit of certain turbojet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(3): 311-314(in Chinese).
    [17] VERBIST M. Gas path analysis for enhanced aero-engine condition monitoring and maintenance[D]. Netherlands: Delft University of Technology, 2017: 15-38.
    [18] KURZKE J, HALLIWELL I. Propulsion and power: an exploration of gas turbine performance modeling[M]. Berlin: Springer, 2018: 491-495.
    [19] CUMPSTY N. Jet propulsion: a simple guide to the aerodynamic and thermodynamic design and performance of jet engines[M]. Edinburgh: Cambridge University Press, 1997.
    [20] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57. doi: 10.1007/s11721-007-0002-0
    [21] KENNEDY J. Particle swarm optimization[C]//Proceedings of the Encyclopedia of Machine Learning. Berlin: Springer, 2011: 760-766.
    [22] RIDAURA J A R. Correlation analysis between HPC blade chord and compressor efficiency for the CFM56-3[D]. Lisbon: University of Lisbon, 2013.
    [23] 楚武利, 刘前智, 胡春波. 航空叶片机原理[M]. 西安: 西北工业大学出版社, 2009: 9.

    CHU W L, LIU Q Z, HU C B. Principle of aviation blade machine[M]. Xi’an: Northwestern Polytechnical University Press, 2009: 9(in Chinese).
    [24] TSOUTSANIS E, LI Y-G, PILIDIS P, et al. Non-linear model calibration for off-design performance prediction of gas turbines with experimental data[J]. The Aeronautical Journal, 2017, 121(1245): 1758-1777. doi: 10.1017/aer.2017.96
    [25] MARTINS D A R. Off-design performance prediction of the CFM56-3 aircraft engine[D]. Lisbon: University of Lisbon, 2015.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  549
  • HTML全文浏览量:  82
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 录用日期:  2023-08-11
  • 网络出版日期:  2023-08-22
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答