Performance degradation modelling of civil aviation engines based on component characteristic map optimization
-
摘要:
为从单元体层级给出民航发动机气路性能退化的理论依据,以CFM56-3发动机为研究对象,在使用特性图缩放法获取部件特性方程的基础之上,优化了风扇通用特性图缩放基准点的选取过程,提出特性图的曲面拟合方法,构建出稳态工况下符合特定转速条件的发动机部件级基准性能模型。通过引入故障因子生成故障系数矩阵,计算发动机监控参数随部件效率下降的偏离量,并与美国通用电气公司培训手册的指印图资料作对比,验证了融合风扇特性图缩放基准点优化及特性图曲面拟合方法的发动机稳态性能模型在气路性能退化分析中具有较好的精度和使用前景。
Abstract:In order to provide a theoretical basis for the gas path performance degradation of civil aviation engines at the module level, the CFM56-3 engine was taken as the research object. Firstly, the characteristic map scaling method was used to obtain the component characteristic equations, and the selection process of the general fan characteristic map scaling reference point was optimized. A characteristic map surface fitting method was proposed to construct an engine component-level benchmark performance model that conformed to specific speed conditions under steady-state operating mode. Then, by introducing fault factors to generate a fault coefficient matrix, the deviation of engine monitoring parameters with the decrease in component efficiency was calculated and compared with the fingerprint diagram data in the General Electric Company training manual. The results show that the engine steady-state performance model integrating fan characteristic map scaling reference point optimization and characteristic map surface fitting methods has good accuracy and application prospects in gas performance degradation analysis.
-
表 1 参数信息
Table 1. Parameters information
参数 数值 涵道比$ {R_{{\mathrm{BPR}}}} $ 5.0245 气体常数$ R $/(J·(kg·K)−1) 287.0 燃油热值$ {H_{\text{U}}} $/107 (J·kg−1) 4.277 低压转子转速$ {N_{1{\text{C}}}} $ 0.9300 燃烧效率$ {\eta _{\text{B}}} $ 0.9960 风扇进口空气总温$ T_2^* $/K 244.14 风扇进口空气总压$ P_2^* $/104 Pa 3.4615 国际标准大气总温$ T_{{\text{ISA}}}^* $/K 288.15 国际标准大气总压$ P_{{\text{ISA}}}^* $/105 Pa 1.01325 高压涡轮轴机械效率$ {\eta _{{\text{MH}}}} $ 0.99 低压涡轮轴机械效率$ {\eta _{{\text{ML}}}} $ 1.00 进气道总压恢复系数$ {\sigma _{\text{I}}} $ 0.99 中介机匣总压恢复系数$ {\sigma _{24}} $ 0.98 HPT转子轴承冷却空气比例$ {\nu _{{\text{CHR}}}} $ 0.05 HPT进口导向叶片冷却空气比例$ {\nu _{{\text{CHN}}}} $ 0.06 LPT进口导向叶片冷却空气比例$ {\nu _{{\text{CLN}}}} $ 0.02 表 2 CFM56-3发动机参数基准值
Table 2. Parameter reference values of CFM56-3 engine
参数 基准值 参数 基准值 $ T_{13}^* $/K 286.8200 $ {W_{\text{F}}} $/(kg·s−1) 0.3800 $ T_{25}^* $/K 317.2400 $ {W_4} $/(kg·s−1) 17.5076 $ T_3^* $/K 663.3500 $ {W_{41}} $/(kg·s−1) 18.6934 $ T_4^* $/K 1345.7188 $ {W_{44}} $/(kg·s−1) 19.6801 $ T_{41}^* $/K 1305.8580 $ {W_{45}} $/(kg·s−1) 20.0752 $ T_{43}^* $/K 991.8628 $ {\pi _{{\text{Fan}}}} $ 1.6600 $ T_{44}^* $/K 976.2153 $ {\pi _{{\text{LPC}}}} $ 2.2480 $ T_{45}^* $/K 967.7159 $ {\pi _{{\text{HPC}}}} $ 10.7020 $ T_5^* $/K 717.9947 $ {\pi _{{\text{HPT}}}} $ 4.2566 $ {W_{13}} $/(kg·s−1) 99.1820 $ {\pi _{{\text{LPT}}}} $ 3.8993 $ {W_2} $/(kg·s−1) 118.9210 $ {\eta _{{\text{Fan}}}} $ 0.8931 $ {W_{2{\text{Rstd}}}} $/(kg·s−1) 320.4200 $ {\eta _{{\text{LPC}}}} $ 0.8700 $ {W_{22}} $/(kg·s−1) 19.7396 $ {\eta _{{\text{HPC}}}} $ 0.8616 $ {W_{22{\text{Rstd}}}} $/(kg·s−1) 53.1860 $ {\eta _{{\text{HPT}}}} $ 0.8215 $ {W_{25{\text{Rstd}}}} $/(kg·s−1) 27.4870 $ {\eta _{{\text{LPT}}}} $ 0.8860 $ {W_3} $/(kg·s−1) 19.3450 $ {N_{2{\text{C}}}} $ 0.9099 $ {W_{31}} $/(kg·s−1) 17.1747 $ T_{{\mathrm{EGT}}}^* $/K 891.6017 表 3 不同监控参数偏离量和故障因子下的故障系数
Table 3. Fault coefficients under different monitoring parameter deviations and fault factors
监控参数偏移 故障系数aij/% $ \delta {\tilde W_{2{\text{Rstd}}}} $ $ \delta {\tilde \eta _{{\text{Fan}}}} $ $ \delta {\tilde W_{22{\text{Rstd}}}} $ $ \delta {\tilde \eta _{{\text{LPC}}}} $ $ \delta {\tilde W_{25{\text{Rstd}}}} $ $ \delta {\tilde \eta _{{\text{HPC}}}} $ $ \delta {\tilde \eta _{{\text{HPT}}}} $ $ \delta {\tilde \eta _{{\text{LPT}}}} $ $ \delta T_{13}^* $ −0.32 0.15 0.02 0 −0.01 0.02 0.03 −0.01 $ \delta T_{25}^* $ 0.21 −0.06 −0.39 0.23 −0.03 0.15 0.19 −0.09 $ \delta T_3^* $ −0.63 0.21 −0.06 0.25 0.07 0.24 −0.37 0.31 $ \delta T_4^* $ −0.99 0.71 0.19 0.40 −0.11 0.80 0.64 0.76 $ \delta T_{41}^* $ −0.98 0.69 0.18 0.39 −0.11 0.79 0.61 0.74 $ \delta T_{43}^* $ −0.93 0.80 0.19 0.45 −0.20 0.99 1.17 0.81 $ \delta T_{44}^* $ −0.92 0.78 0.18 0.44 −0.19 0.97 1.12 0.79 $ \delta T_{45}^* $ −0.92 0.78 0.18 0.44 −0.19 0.97 1.11 0.79 $ \delta T_5^* $ −0.88 0.93 0.20 0.51 −0.22 1.07 1.20 1.29 $ \delta {\pi _{{\text{Fan}}}} $ −0.96 0 0.06 0 0 0.06 0.12 0 $ \delta {\pi _{{\text{LPC}}}} $ 1.16 −0.40 −1.47 0.04 −0.13 0.80 1.02 −0.58 $ \delta {\pi _{{\text{HPC}}}} $ −2.79 0.92 1.00 0.07 0.28 −1.28 −1.77 1.32 $ \delta {\pi _{{\text{HPT}}}} $ −0.40 −0.52 −0.02 −0.24 0.15 −0.31 −0.36 −0.27 $ \delta {\pi _{{\text{LPT}}}} $ −0.31 −0.66 −0.06 −0.30 0.12 −0.30 −0.17 −0.55 $ \delta {W_{\text{F}}} $ −2.30 1.43 −0.20 0.50 −0.14 0.57 0.55 1.56 $ \delta {N_{2{\text{C}}}} $ −1.19 0.39 0.27 0.16 0.79 −0.82 −1.04 0.56 $ T_{\mathrm{ EGT}} $ −0.91 0.80 0.18 0.45 −0.20 0.98 1.13 0.87 表 4 监控参数偏离量比例关系
Table 4. Proportional relationship of monitoring parameters deviation
监控参数
偏离量比例关系$ \delta T_{\mathrm{EGT}}:\delta W_{\text{F}}:\delta N_{2\text{C}} $ 实验 指印图 −1% ηPAN 1:0.20:0.05 1:0.22:0.12 −1% ηLPC 1:0.12:0.04 1:0.10:0.03 −1% ηHPC 1:0.06:−0.09 1:0.10:−0.13 −1% ηHPT 1:0.06:−0.10 1:0.10:−0.13 −1% ηLPT 1:0.20:0.07 1:0.21:0.10 -
[1] 中国民用航空局. 2021年民航行业发展统计公报[EB/OL]. (2022-05-18)[2023-05-30]. http://www.caac.gov.cn/XXGK/XXGK/TJSJ/202205/t20220518_213297.html.Civil Aviation Administration of China. Statistical bulletin on the development of civil aviation industry in 2021[EB/OL]. (2022-05-18)[2023-05-30]. http://www.caac.gov.cn/XXGK/XXGK/TJSJ/202205/t20220518_213297.html(in Chinese). [2] 林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565.LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 626565(in Chinese). [3] 李少尘, 陈敏, 胡金涛, 等. 航空燃气涡轮发动机气路故障诊断进展[J]. 航空发动机, 2022, 48(2): 33-49.LI S C, CHEN M, HU J T, et al. A review of research progress on aircraft gas turbine engines gas path fault diagnosis[J]. Aeroengine, 2022, 48(2): 33-49(in Chinese). [4] SAJTEEV A M. Gas turbine diagnostics based on gas path analysis[D]. Netherlands: Delft University of Technology, 2015: 19-29. [5] URBAN L A. Gas path analysis applied to turbine engine condition monitoring[J]. Journal of Aircraft, 1973, 10(7): 400-406. doi: 10.2514/3.60240 [6] URBAN L A, VOLPONI A J. Mathematical methods of relative engine performance diagnostics[C]//Proceedings of the Aerospace Technology Conference and Exposition. Warrendale: SAE International, 1992: 922048. [7] 范作民, 孙春林, 林兆福. 发动机故障诊断的主因子模型[J]. 航空学报, 1993, 14(12): 588-595. doi: 10.3321/j.issn:1000-6893.1993.12.008FAN Z M, SUN C L, LIN Z F. Primary factor model for jet engine fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(12): 588-595(in Chinese). doi: 10.3321/j.issn:1000-6893.1993.12.008 [8] 范作民, 孙春林, 白杰. 航空发动机故障诊断导论[M]. 北京: 科学出版社, 2004: 2-45.FAN Z M, SUN C L, BAI J. Introduction to aeroengine fault diagnosis[M]. Beijing: Science Press, 2004: 2-45(in Chinese). [9] STAMATIS A, MATHIOUDAKIS K, PAPAILIOU K D. Adaptive simulation of gas turbine performance[J]. Journal of Engineering for Gas Turbines and Power, 1990, 112(2): 168-175. doi: 10.1115/1.2906157 [10] 黄金泉, 王启航, 鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报, 2020, 52(4): 507-522.HUANG J Q, WANG Q H, LU F. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(4): 507-522(in Chinese). [11] 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9): 625573.CAO M, HUANG J Q, ZHOU J, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅰ: diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625573(in Chinese). [12] 骆广琦, 桑增产, 王如根, 等. 航空燃气涡轮发动机数值仿真[M]. 北京: 国防工业出版社, 2007: 49-51.LUO G Q, SANG Z C, WANG R G, et al. Numerical methods for aviation gas turbine engine simulation[M]. Beijing: National Defense Industry Press, 2007: 49-51(in Chinese). [13] 李书明, 王泽芃, 孙爽, 等. 基于贝兹曲线的压气机特性图生成方法[J]. 科学技术与工程, 2021, 21(33): 14428-14433. doi: 10.3969/j.issn.1671-1815.2021.33.054LI S M, WANG Z P, SUN S, et al. Compressor engine component maps generating method based on Bézier curve[J]. Science Technology and Engineering, 2021, 21(33): 14428-14433(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.33.054 [14] 黄开明, LI Y G, 张伟, 等. 某型涡轴发动机性能衰减与部件退化评估[J]. 航空动力学报, 2015, 30(11): 2673-2679.HUANG K M, LI Y G, ZHANG W, et al. Performance degradation and components deterioration degree estimation for a turboshaft engine[J]. Journal of Aerospace Power, 2015, 30(11): 2673-2679(in Chinese). [15] 张冬阳. 压气机特性的系数拟合法[J]. 燃气轮机技术, 1993, 6(3): 27-32.ZHANG D Y. Coefficient fitting method for compressor characteristics[J]. Gas Turbine Technology, 1993, 6(3): 27-32(in Chinese). [16] 欧阳辉, 朱之丽. 某涡喷发动机数值建模与改型设计[J]. 北京航空航天大学学报, 2008, 34(3): 311-314.OUYANG H, ZHU Z L. Modeling and retrofit of certain turbojet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(3): 311-314(in Chinese). [17] VERBIST M. Gas path analysis for enhanced aero-engine condition monitoring and maintenance[D]. Netherlands: Delft University of Technology, 2017: 15-38. [18] KURZKE J, HALLIWELL I. Propulsion and power: an exploration of gas turbine performance modeling[M]. Berlin: Springer, 2018: 491-495. [19] CUMPSTY N. Jet propulsion: a simple guide to the aerodynamic and thermodynamic design and performance of jet engines[M]. Edinburgh: Cambridge University Press, 1997. [20] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57. doi: 10.1007/s11721-007-0002-0 [21] KENNEDY J. Particle swarm optimization[C]//Proceedings of the Encyclopedia of Machine Learning. Berlin: Springer, 2011: 760-766. [22] RIDAURA J A R. Correlation analysis between HPC blade chord and compressor efficiency for the CFM56-3[D]. Lisbon: University of Lisbon, 2013. [23] 楚武利, 刘前智, 胡春波. 航空叶片机原理[M]. 西安: 西北工业大学出版社, 2009: 9.CHU W L, LIU Q Z, HU C B. Principle of aviation blade machine[M]. Xi’an: Northwestern Polytechnical University Press, 2009: 9(in Chinese). [24] TSOUTSANIS E, LI Y-G, PILIDIS P, et al. Non-linear model calibration for off-design performance prediction of gas turbines with experimental data[J]. The Aeronautical Journal, 2017, 121(1245): 1758-1777. doi: 10.1017/aer.2017.96 [25] MARTINS D A R. Off-design performance prediction of the CFM56-3 aircraft engine[D]. Lisbon: University of Lisbon, 2015. -