留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机可动翼面缝隙封严结构研究进展

程小全 蔡墨泉 王松伟

程小全,蔡墨泉,王松伟. 飞机可动翼面缝隙封严结构研究进展[J]. 北京航空航天大学学报,2025,51(6):1816-1823 doi: 10.13700/j.bh.1001-5965.2023.0397
引用本文: 程小全,蔡墨泉,王松伟. 飞机可动翼面缝隙封严结构研究进展[J]. 北京航空航天大学学报,2025,51(6):1816-1823 doi: 10.13700/j.bh.1001-5965.2023.0397
CHENG X Q,CAI M Q,WANG S W. Study progress of gap sealing structure for aircraft movable wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1816-1823 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0397
Citation: CHENG X Q,CAI M Q,WANG S W. Study progress of gap sealing structure for aircraft movable wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1816-1823 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0397

飞机可动翼面缝隙封严结构研究进展

doi: 10.13700/j.bh.1001-5965.2023.0397
详细信息
    通讯作者:

    E-mail:xiaoquan_cheng@buaa.edu.cn

  • 中图分类号: V224+.4

Study progress of gap sealing structure for aircraft movable wing

More Information
  • 摘要:

    主翼面与可动翼面之间的缝隙会对飞机飞行性能造成一定影响,缝隙封严结构的应用会改善机翼的表面光滑性,同时达到增升减阻、优化操纵等效果。基于此,对5种封严结构设计形式进行对比,并将封严结构的设计分为依靠机构和依靠材料2类,分析了其优缺点。比较了4家航空配件公司的封严结构产品,分析了耐磨自由端细节设计。给出了快速拆装修理、限制结构刚度范围、设计时仿真与试验相结合等设计建议。

     

  • 图 1  机翼可动翼面与主翼面间的缝隙[1]

    Figure 1.  Gap between movable wing surface and main wing surface[1]

    图 2  传统翼面封严结构[7]

    Figure 2.  Traditional wing sealing structure[7]

    图 3  舰载机F-18与J-15对比

    Figure 3.  Comparison between shipboard aircraft F-18 and J-15

    图 4  Lasar Aero Styling & Repair公司的封严结构产品安装示意图

    Figure 4.  Installation diagram of Lasar Aero Styling & Repair Company’s sealing structure products

    图 5  自制层合板封严结构

    Figure 5.  Self-made laminated plate sealing structure

    图 6  传统翼面封严结构[7]

    Figure 6.  Traditional wing sealing structures[7]

    图 7  飞行舵面前缘随动封严结构[8]

    Figure 7.  A kind of Follow-up sealing structure for leading edge of aircraft rudder surface[8]

    图 8  前缘襟翼缝隙封严结构[9]

    Figure 8.  A kind of gap sealing structure for leading edge of flap[9]

    图 9  弹簧预加载式封严结构[10]

    Figure 9.  Spring preloaded sealing structure[10]

    图 10  长机翼上的多组封严结构[10]

    Figure 10.  Multiple sealing structures on long wings[10]

    图 11  整流罩封严结构[11]

    Figure 11.  A kind of fairing sealing structure[11]

    图 12  随动搭接式封严结构及偏转姿态[12]

    Figure 12.  Follow-up overlapping sealing structure and deflection attitudes[12]

    图 13  粘接或填充在封严板自由端的硅树脂橡胶[14,20]

    Figure 13.  Silicone rubber bonded or filled at free end of sealing plate[14,20]

    图 14  封严板自由端与可动翼面接触位置的耐磨铁磁条[21]

    Figure 14.  Wear resistant ferromagnetic strip at contact position between free end of sealing plate and movable wing surface[21]

    表  1  4家公司封严结构产品信息对比

    Table  1.   Comparison of product information for four companies with strict sealing structures

    公司名称 适用机型 性能提升 选材和安装 产品价格/美元
    Lasar Aero Styling & Repair Mooney M20系列 巡航速度增加2~4 km/h,爬升
    速度显著增加,操纵性能改善
    铝制板材,抽芯铆钉安装,襟翼部位安装需12 h,副翼部位为4 h 180~325
    Whelen Comanche PA-24, PA-28,
    PA-32, PA-34, PA-39,
    PA-44系列
    巡航速度提升4~5 km/h ,着陆速度更低 高性能环氧树脂层合板,3~4 h安装时间 999~1799
    Knots 2U Piper、Beech、Cessna
    等系列
    将Piper Twin Comanche型号的巡航速度提升32 km/h,其余型
    号提升6~8 km/h
    铝制板材、超高分子量塑料防摩擦条,用螺钉安装于可动翼面内部,安装时间4 h 250~900
    Horton Cessna 182 Skylane 巡航速度提升3 km/h,着陆时的滚转速率和低速状态下的操纵性能明显改善 铝制板材或玻璃纤维层合板,带有硅树脂黏合剂,使用空心铆钉固定,安装时间为8~12 h 350
    下载: 导出CSV
  • [1] 李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5): 1-10.

    LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5): 1-10 (in Chinese).
    [2] 金伟, 杨智春, 孟德虹, 等. 先进战斗机全动V尾抖振动强度设计与验证[J]. 航空学报, 2020, 41(6): 523473.

    JIN W, YANG Z C, MENG D H, et al. Strength desigh and test of advanced fighter all-moving twin V-tail buffet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523473(in Chinese).
    [3] 聂春生, 阎君, 曹占伟, 等. 头部外形对升力体转捩影响的试验研究[J]. 导弹与航天运载技术, 2022(4): 104-108.

    NIE C S, YAN J, CAO Z W, et al. Study on the influence of head shape on transition of lifting body[J]. Missiles and Space Vehicles, 2022(4): 104-108(in Chinese).
    [4] HERNANDEZ J, FOULIARD Q P, VO K, et al. Characterization of corrosive defects through pulsed eddy current thermography for aircraft panels: AIAA 2021-0433[R]. Reston: AIAA, 2021.
    [5] 桑建华, 张宗斌, 王烁. 低RCS飞行器表面弱散射源研究[J]. 航空工程进展, 2012, 3(3): 257-262. doi: 10.3969/j.issn.1674-8190.2012.03.002

    SANG J H, ZHANG Z B, WANG S. Research on the radar cross section of weak scatterers on stealth vehicle[J]. Advances in Aeronautical Science and Engineering, 2012, 3(3): 257-262(in Chinese). doi: 10.3969/j.issn.1674-8190.2012.03.002
    [6] 王立研, 王菁华, 杨炳尉. 高超声速飞行器控制面动密封技术[J]. 宇航材料工艺, 2016, 46(3): 1-6. doi: 10.3969/j.issn.1007-2330.2016.03.001

    WANG L Y, WANG J H, YANG B W. Dynamic seal technology for control surface of hypersonic vehicles[J]. Aerospace Materials & Technology, 2016, 46(3): 1-6(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.03.001
    [7] DECKER G R, ROBEDEAU S A. Slotted flaperon seal mechanism for aircraft devices: US11046421[P]. 2021-06-29.
    [8] 潘立新, 孔斌, 何娅梅, 等. 一种飞行器舵面前缘随动封严结构: CN204433037U[P]. 2015-07-01.

    PAN L X, KONG B, HE Y M, et al. A kind of follow-up sealing structure for the leading edge of aircraft rudder surface: CN204433037U[P]. 2015-07-01(in Chinese).
    [9] 胡利, 禹建军, 刘衍腾, 等. 一种前缘襟翼缝隙封严机构: CN108609160A[P]. 2021-05-07.

    HU L, YU J J, LIU Y T, et al. A kind of gap sealing mechanism for the leading edge of flap: CN108609160A[P]. 2021-05-07(in Chinese).
    [10] WILDMAN E. Flight surface seal: US8292236[P]. 2012-10-23.
    [11] JOHNSON B D. Fairing arrangements for aircraft: US7051982[P]. 2006-05-30.
    [12] 王东, 胡珺, 陈世春, 等. 一种飞机操纵面封严结构: CN207725605U[P]. 2018-08-14.

    WANG D, HU J, CHEN S C, et al. Airplane control face structure of obturaging: CN207725605U[P]. 2018-08-14(in Chinese).
    [13] 成骏, 阚小如, 陶义建. 基于Dynaform的飞机封严板压窝成形工艺分析与优化设计[J]. 锻压技术, 2021, 46(1): 37-42.

    CHENG J, KAN X R, TAO Y J. Analysis and optimal design on press dimple forming process for aircraft seal plate based on Dynaform[J]. Forging & Stamping Technology, 2021, 46(1): 37-42(in Chinese).
    [14] BLADES P. Seal for aircraft wing: US10480653[P]. 2019-11-19.
    [15] 许腾飞, 王新峰, 郭树祥. 高弹性橡胶夹层结构封严板分析方法[J]. 南京航空航天大学学报, 2020, 52(3): 394-400.

    XU T F, WANG X F, GUO S X. Analytical method of sealed plate with hyperelastic rubber sandwich structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(3): 394-400(in Chinese).
    [16] 徐丽, 陈跃良, 武书阁, 等. 舰载机舰面停放环境及腐蚀情况研究[J]. 飞机设计, 2016, 36(6): 54-57.

    XU L, CHEN Y L, WU S G, et al. The study about the deck park environment of carrier-based aircraft and corrosive state[J]. Aircraft Design, 2016, 36(6): 54-57(in Chinese).
    [17] 徐海宇. PLA/竹纤维复合材料的制备及其性能研究[D]. 杭州: 浙江农林大学, 2021.

    XU H Y. Preparation and properties of PLA/bamboo fiber composites[D]. Hangzhou: Zhejiang A & F University, 2021(in Chinese).
    [18] 梁珊, 李杨, 吴建军, 等. 竹纤维/玻璃纤维混杂增强聚丙烯复合材料[J]. 塑料, 2012, 41(5): 86-88.

    LIANG S, LI Y, WU J J, et al. Properties of bamboo fiber/glass fiber/hybrid reinforced polypropylene composite material[J]. Plastics, 2012, 41(5): 86-88(in Chinese).
    [19] STEINETZ B M. Seal technology for hypersonic vehicle and propulsion: an overview[C]//Proceedings of the Short Course on Hypersonics Structures and Materials. Hampton: NTRS, 2008.
    [20] BLADES P. Seal plate for an aerodynamic surface: US11299254[P]. 2022-04-12.
    [21] NEAL M A, SMITH C R. Dynamic conformal aerodynamic seal (CAS) for aircraft control surfaces: US10017239[P]. 2018-07-10.
    [22] POLL D I A. Transition in the infinite swept attachment line boundary layer[J]. Aeronautical Quarterly, 1979, 30(4): 607-629. doi: 10.1017/S0001925900008763
    [23] HAFTMANN B, DEBBELER F J, GIELEN H. Takeoff drag prediction for airbus A300-600 and A310 compared with flight test results[J]. Journal of Aircraft, 1988, 25(12): 1088-1096. doi: 10.2514/3.45707
    [24] SPAID F W. High Reynolds number, multielement airfoil flowfieldmeasurements[J]. Journal of Aircraft, 2000, 37(3): 499-507. doi: 10.2514/2.2626
    [25] 赖欢, 祝长江, 陈万华, 等. 大型低温风洞结构设计关键技术分析[J]. 实验流体力学, 2022, 36(1): 19-26. doi: 10.11729/syltlx20210040

    LAI H, ZHU C J, CHEN W H, et al. Key technology for mechanical design in large-scale cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 19-26(in Chinese). doi: 10.11729/syltlx20210040
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  78
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-19
  • 录用日期:  2023-09-08
  • 网络出版日期:  2023-09-15
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答