留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GRU和改进注意力机制的多信息融合的EMA故障诊断方法

彭朝琴 李奇聪 陈娟 马纪明

彭朝琴,李奇聪,陈娟,等. 基于GRU和改进注意力机制的多信息融合的EMA故障诊断方法[J]. 北京航空航天大学学报,2025,51(11):3734-3744 doi: 10.13700/j.bh.1001-5965.2023.0584
引用本文: 彭朝琴,李奇聪,陈娟,等. 基于GRU和改进注意力机制的多信息融合的EMA故障诊断方法[J]. 北京航空航天大学学报,2025,51(11):3734-3744 doi: 10.13700/j.bh.1001-5965.2023.0584
PENG Z Q,LI Q C,CHEN J,et al. Fault diagnosis method for EMA based on multi-source signal fusion with GRU and improved attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3734-3744 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0584
Citation: PENG Z Q,LI Q C,CHEN J,et al. Fault diagnosis method for EMA based on multi-source signal fusion with GRU and improved attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3734-3744 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0584

基于GRU和改进注意力机制的多信息融合的EMA故障诊断方法

doi: 10.13700/j.bh.1001-5965.2023.0584
基金项目: 

国家自然科学基金(62373029)

详细信息
    通讯作者:

    E-mail:pengzhaoqin@buaa.edu.cn

  • 中图分类号: TH133.3

Fault diagnosis method for EMA based on multi-source signal fusion with GRU and improved attention mechanism

Funds: 

National Natural Science Foundation of China (62373029)

More Information
  • 摘要:

    针对传统基于机器学习和深度学习的机电伺服系统(EMA)故障诊断方法存在时序特征丢失、故障信息丢失的问题,提出一种基于门控循环单元(GRU)和改进注意力机制的多信息融合的EMA故障诊断方法。将采集的不同传感器信号分为不同通道,通过GRU提取每个通道信号的时序特征,再引入自注意力机制进一步分辨信号不同时间点之间的重要关系,进一步引入多通道注意力机制自适应融合不同通道的特征,通过分类器实现故障诊断。基于测试试验台数据集的试验结果表明:所提方法与单传感器的模型相比,诊断准确率提升10%;与不引入注意力机制的模型相比,诊断准确率提升5.2%;与经典的机器学习、深度学习和近两年基于深度学习的改进算法相比,所提方法的诊断准确率在98.5%以上,诊断效果最优。

     

  • 图 1  GRU结构

    Figure 1.  Structure of GRU

    图 2  自注意力机制结构

    Figure 2.  Structure of SA

    图 3  多头自注意力机制结构

    Figure 3.  Structure of MHSA

    图 4  多通道注意力机制结构

    Figure 4.  Structure of multi-channel attention mechanism

    图 5  本文故障诊断模型结构

    Figure 5.  Architecture of the proposed fault diagnosis model

    图 6  滑动窗口的过程

    Figure 6.  Sliding window processing

    图 7  本文模型流程图

    Figure 7.  Flowchart of the proposed model

    图 8  EMA测试台

    Figure 8.  EMA test rig

    图 9  本文模型训练可视化

    Figure 9.  Visualization of the proposed model training process

    图 10  训练过程中多通道注意力权重变化情况

    Figure 10.  Changes in multi-channel attention weights during training process

    图 11  本文模型诊断结果混淆矩阵

    Figure 11.  Confusion matrix of the proposed modeldiagnosis results

    图 12  单通道模型诊断结果混淆矩阵

    Figure 12.  Confusion matrix of single-channel model diagnosis results

    表  1  EMA数据集

    Table  1.   EMA dataset

    故障类型 故障程度/% 类别
    正常 0 0
    塑性变形 10 A1
    20 A2
    30 A3
    40 A4
    50 A5
    60 A6
    磨损 10 B1
    20 B2
    30 B3
    40 B4
    50 B5
    60 B6
    下载: 导出CSV

    表  2  本文模型的结构参数

    Table  2.   Structure parameters of the proposed model

    网络层 关键参数 输入形状/
    像素
    输出形状/
    像素
    GRU 层数大小为2
    输入特征维度为16
    隐层状态维度为64
    Dropout 0.2
    64×64×16 64×64×64
    MHSA 输入特征维度为64
    注意力头数为4
    Dropout 0.2
    64×64×64 64×64
    SE多通道注意力机制 输入通道为4
    缩减比例为0.2
    64×4×64 64×4×64
    展平层 64×4×64 64×256
    Relu层 64×256 64×256
    Dropout层 64×256 64×256
    全连接层 64×256 64×13
    下载: 导出CSV

    表  3  GRU的层数对准确率和训练时间的影响

    Table  3.   Effect of number of GRU on accuracy and training time

    层数 准确率/% 训练时间/s
    1 96.18 64.44
    2 98.53 74.81
    3 99.12 95.35
    4 98.53 112.30
    下载: 导出CSV

    表  4  不同传感器的诊断效果

    Table  4.   Diagnosis performance of different sensors

    传感器 Accuracy/% Precision/% Recall/% F1/%
    传感器1
    (负载扭矩)
    42.84 44.76 42.84 42.62
    传感器2
    (温度)
    88.53 84.44 88.53 85.70
    传感器3
    (纵向振动)
    86.57 86.72 86.57 86.58
    传感器4
    (横向振动)
    80.10 81.93 80.10 80.28
    多传感器 98.53 98.53 98.52 98.53
    下载: 导出CSV

    表  5  不同模型的诊断效果

    Table  5.   Diagnosis performance of different models

    模型 Accuracy/% Precision/% Recall/% F1/%
    KNN[22] 67.85 68.52 67.85 67.58
    SVM[23] 80.27 82.48 80.27 80.55
    SSAE[24] 87.15 87.87 87.15 86.99
    1D-CNN-LSTM[25] 89.71 90.44 89.71 89.71
    GRU-DAE[14] 96.57 97.24 96.57 96.52
    NA-GRU 93.33 93.61 93.33 93.35
    MHSA-GRU 97.35 97.67 97.35 97.34
    本文模型 98.53 98.53 98.52 98.53
    下载: 导出CSV
  • [1] MAZZOLENI M, RITO G D, PREVIDI F. Electro-mechanical actuators for the more electric aircraft[M]. Berlin: Springer, 2021.
    [2] 刘俊志. 飞机机电系统故障诊断方法研究[D]. 成都: 电子科技大学, 2023.

    LIU J Z. Research on fault diagnosis methods for aircraft electromechanical systems[D]. Chengdu: University of Electronic Science and Technology of China, 2023(in Chinese).
    [3] ASAD B, VAIMANN T, BELAHCEN A, et al. Broken rotor bar fault diagnostic of inverter fed induction motor using FFT, Hilbert and park’s vector approach[C]//Proceedings of the International Conference on Electrical Machines. Piscataway: IEEE Press, 2018: 2352-2358.
    [4] WANG J, DU G F, ZHU Z K, et al. Fault diagnosis of rotating machines based on the EMD manifold[J]. Mechanical Systems and Signal Processing, 2020, 135: 106-443.
    [5] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104. doi: 10.3901/JME.2018.05.094

    LEI Y G, JIA F, KONG D T, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104(in Chinese). doi: 10.3901/JME.2018.05.094
    [6] OTTER D W, MEDINA J R, KALITA J K. A survey of the usages of deep learning for natural language processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 604-624. doi: 10.1109/TNNLS.2020.2979670
    [7] HUANG R Y, LIAO Y X, ZHANG S H, et al. Deep decoupling convolutional neural network for intelligent compound fault diagnosis[J]. IEEE Access, 2018, 7: 1848-1858.
    [8] WANG J Y, ZHANG Y J, LUO C, et al. Deep learning domain adaptation for electro-mechanical actuator fault diagnosis under variable driving waveforms[J]. IEEE Sensors Journal, 2022, 22(11): 10783-10793. doi: 10.1109/JSEN.2022.3168875
    [9] SONG Y T, DU J H, LI S X, et al. Multi-scale feature fusion convolutional neural networks for fault diagnosis of electromechanical actuator[J]. Applied Sciences, 2023, 13(15): 8689. doi: 10.3390/app13158689
    [10] LINDEMANN B, MASCHLER B, SAHLAB N, et al. A survey on anomaly detection for technical systems using LSTM networks[J]. Computers in Industry, 2021, 131: 103498. doi: 10.1016/j.compind.2021.103498
    [11] YANG S D, YU X Y, ZHOU Y. LSTM and GRU neural network performance comparison study: taking yelp review dataset as an example[C]//Proceedings of the International Workshop on Electronic Communication and Artificial Intelligence. Piscataway: IEEE Press, 2020: 98-101.
    [12] ENCALADA-DÁVILA Á, MOYÓN L, TUTIVÉN C, et al. Early fault detection in the main bearing of wind turbines based on gated recurrent unit (GRU) neural networks and SCADA data[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5583-5593. doi: 10.1109/TMECH.2022.3185675
    [13] 张立鹏, 毕凤荣, 程建刚, 等. 基于注意力BiGRU的机械故障诊断方法研究[J]. 振动与冲击, 2021, 40(5): 113-118.

    ZHANG L P, BI F R, CHENG J G, et al. Mechanical fault diagnosis method based on attention BiGRU[J]. Journal of Vibration and Shock, 2021, 40(5): 113-118(in Chinese).
    [14] LI D L, WEI X Y, WEI Z, et al. A fault diagnosis method of rolling bearing based on GRU convolution denoising auto-encoder[C]//Proceedings of the Advances in Mechanism, Machine Science and Engineering. Berlin: Springer, 2023: 2009-2022.
    [15] QIAN G S, LIU J Q. Fault diagnosis based on gated recurrent unit network with attention mechanism and transfer learning under few samples in nuclear power plants[J]. Progress in Nuclear Energy, 2023, 155: 104502. doi: 10.1016/j.pnucene.2022.104502
    [16] YANG J, GUO Y Q, ZHAO W L. An intelligent fault diagnosis method for an electromechanical actuator based on sparse feature and long short-term network[J]. Measurement Science and Technology, 2021, 32(9): 095102. doi: 10.1088/1361-6501/abfbab
    [17] 许同乐. 旋转机械故障信号处理与诊断方法[M]. 北京: 高等教育出版社, 2020.

    XU T L. Methods for signal processing and fault diagnosis of rotating machinery[M]. Beijing: Higher Education Press, 2020(in Chinese).
    [18] VASWANI A, SHAZEER N, NIKI P, et al. Attention is all you need[EB/OL]. (2023-08-02)[2023-09-10]. https://arxiv.org/abs/1706.03762.
    [19] 祁宣豪, 智敏. 图像处理中注意力机制综述[J]. 计算机科学与探索, 2024, 18(2): 345-362. doi: 10.3778/j.issn.1673-9418.2305057

    QI X H, ZHI M. Review of attention mechanisms in image processing[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 345-362(in Chinese). doi: 10.3778/j.issn.1673-9418.2305057
    [20] KUMAR A, VEERUBHOTLA A S, NARAPAREDDY V T, et al. Aspect term extraction for opinion mining using a hierarchical self-attention network[J]. Neurocomputing, 2021, 465: 195-204. doi: 10.1016/j.neucom.2021.08.133
    [21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [22] HAN T, ZHANG L W, YIN Z J, et al. Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine[J]. Measurement, 2021, 177: 109022. doi: 10.1016/j.measurement.2021.109022
    [23] MEDINA R, MACANCELA J C, LUCERO P, et al. Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM[J]. Journal of Intelligent Manufacturing, 2022, 33(4): 1031-1055. doi: 10.1007/s10845-020-01712-9
    [24] CHEN Z Y, LI W H. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1693-1702. doi: 10.1109/TIM.2017.2669947
    [25] ALSUMAIDAEE Y A M, YAW C T, KOH S P, et al. Detection of corona faults in switchgear by using 1D-CNN, LSTM, and 1D-CNN-LSTM methods[J]. Sensors, 2023, 23(6): 3108. doi: 10.3390/s23063108
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  583
  • HTML全文浏览量:  107
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 录用日期:  2023-10-13
  • 网络出版日期:  2023-10-25
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答