留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外形隐身设计空间分析及气动隐身设计方法

周琳 张伟 陈宪 黄江涛 高正红

周琳,张伟,陈宪,等. 外形隐身设计空间分析及气动隐身设计方法[J]. 北京航空航天大学学报,2025,51(11):3808-3821 doi: 10.13700/j.bh.1001-5965.2023.0586
引用本文: 周琳,张伟,陈宪,等. 外形隐身设计空间分析及气动隐身设计方法[J]. 北京航空航天大学学报,2025,51(11):3808-3821 doi: 10.13700/j.bh.1001-5965.2023.0586
ZHOU L,ZHANG W,CHEN X,et al. Analysis of shaping design space and aerodynamic/stealth design methodology[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3808-3821 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0586
Citation: ZHOU L,ZHANG W,CHEN X,et al. Analysis of shaping design space and aerodynamic/stealth design methodology[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3808-3821 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0586

外形隐身设计空间分析及气动隐身设计方法

doi: 10.13700/j.bh.1001-5965.2023.0586
详细信息
    通讯作者:

    E-mail:hjtcyfx@163.com

  • 中图分类号: V218

Analysis of shaping design space and aerodynamic/stealth design methodology

More Information
  • 摘要:

    外形隐身是决定飞行器隐身性能的首要因素,军用飞行器在开展外形设计时需综合考虑气动性能和隐身性能,优化设计时需考虑气动学科和隐身学科的特点。基于Multi-start算法对翼型、布局外形隐身的设计空间特性进行分析,研究结果表明,外形隐身设计是复杂的多峰问题。针对优化问题的多峰性,在经典全局多峰粒子群优化算法的基础上引入局部搜索策略,提出适应值-距离比环形粒子群优化(FER-R3PSO)算法,采用标准函数算例对所提算法的搜索效果进行验证。在此基础上,将全局多峰算法与梯度优化方法结合,提出全局/梯度耦合的气动隐身设计方法,采用飞翼布局气动/隐身优化问题对所提方法的优化效果进行验证。优化结果表明:相对于梯度优化,所提方法能够以较少的计算代价获得气动、隐身特性更加优秀的外形。

     

  • 图 1  Multi-start隐身优化翼型对比

    Figure 1.  Comparisons of Multi-start stealth optimization airfoils

    图 2  Multi-start优化结果的设计变量值

    Figure 2.  Design variable values of Multi-start optimization results

    图 3  设计变量位置及剖面编号

    Figure 3.  Design variable distribution and slice index

    图 4  优化结果在Y=4.5 m、Y=8.0 m剖面外形

    Figure 4.  Optimized airfoil geometry at Y=4.5 m and Y=8.0 m

    图 5  Multi-start优化外形各剖面设计变量值

    Figure 5.  Optimized design variable values at different slices

    图 6  R3PSO算法的拓扑结构

    Figure 6.  Topology of R3PSO algorithm

    图 7  全局/梯度耦合的气动隐身优化设计方法

    Figure 7.  Global/gradient coupled aero/stealth optimization design approach

    图 8  NACA65016翼型全局和梯度优化外形几何对比

    Figure 8.  Geometry comparisons of global and gradient optimization of NACA65016 airfoil

    图 9  NACA65016翼型全局和梯度优化外形压力分布

    Figure 9.  Pressure distribution comparisons of global and gradient optimization of NACA65016 airfoil

    图 10  NACA65016近场散射电场强度

    Figure 10.  Near-field scattering characteristics of NACA65016

    图 11  GlobalOpt1近场散射电场强度

    Figure 11.  Near-field scattering characteristics of GlobalOpt1

    图 12  初始外形表面及剖面压力系数

    Figure 12.  Pressure coefficient distribution of initial geometry and slices

    图 13  X47B1、X47B2和X47B3的${\sigma _{{\mathrm{ave}}}} $对比(f=1 GHz,垂直极化)

    Figure 13.  ${\sigma _{{\mathrm{ave}}}} $ comparisons of X47B1, X47B2 and X47B3 (f=1 GHz, vertical polarization)

    图 14  梯度优化外形各剖面几何及压力分布对比

    Figure 14.  Geometry and pressure coefficient comparisons at different slices for gradient optimization

    图 15  初始外形及X47B3外形梯度优化前后外形${\sigma _{{\mathrm{ave}}}} $对比(f=1 GHz,垂直极化)

    Figure 15.  ${\sigma _{{\mathrm{ave}}}} $ comparisons of initial and X47B3 geometries before and after gradient optimization (f=1 GHz, vertical polarization)

    表  1  Multi-start梯度优化结果

    Table  1.   Multi-start gradient optimization results

    结果编号 10lg(${\sigma _{{\mathrm{ave}}}} $)/m2 tmax
    NACA65016 13.410 0.0016
    Sobol-1 −20.454 0.1618
    Sobol-2 −20.715 0.1686
    Sobol-3 −21.004 0.1607
    Sobol-4 −20.892 0.1601
    Sobol-5 −21.004 0.1607
    Sobol-6 −20.828 0.1899
    Sobol-7 −20.828 0.1899
    Sobol-8 −20.635 0.1600
    Sobol-9 −21.005 0.1606
    Sobol-10 −19.383 0.1600
     注:相同颜色认为属于同一峰值。
    下载: 导出CSV

    表  2  Multi-start初始外形RCS和优化外形RCS

    Table  2.   RCS of multi-start initial and optimized geometries

    编号 初始${\sigma _{{\mathrm{ave}}}} $/m2 优化${\sigma _{{\mathrm{ave}}}} $/m2
    Stealth1 2.5000 1.6840
    Stealth2 2.5168 1.6790
    Stealth3 2.6127 1.6713
    Stealth4 2.4063 1.6777
    Stealth5 2.3854 1.6890
    Stealth6 2.6902 1.7069
    Stealth7 2.5695 1.6796
    Stealth8 2.3834 1.6710
    Stealth9 2.5077 1.7039
    Stealth10 2.4184 1.6785
    下载: 导出CSV

    表  3  CEC2015测试函数性质及测试参数设置

    Table  3.   CEC2015 test function properties and parameter settings

    编号 维度 全局/局部最优 最优值 粒子数 MaxFES
    F1 5 1/15 100 100 40000
    10 1/55 200 150000
    F2 2 4/21 200 100 20000
    5 32/0 150 56600
    8 256/0 200 256000
    F3 2 25/0 300 100 20000
    3 125/0 200 67200
    4 625/0 800 200000
    F4 5 1/15 400 60 40000
    10 1/55 150 149700
    20 1/210 200 581200
    F5 2 25/0 500 100 20000
    3 125/0 200 67200
    4 625/0 800 200000
    F6 4 16/0 600 100 32000
    6 64/0 200 96000
    8 256/0 400 256000
    F7 6 8/0 700 100 34000
    10 32/0 150 113280
    16 256/0 200 512000
    F8 2 36/0 800 100 24000
    3 216/0 250 88320
    4 1296/0 1200 288000
    下载: 导出CSV

    表  4  CEC2015测试函数评估结果

    Table  4.   CEC2015 function test results

    编号 维度 NPF PR
    R3PSO FER-R3PSO R3PSO FER-R3PSO
    F1 5 44 44 0.8627 0.8627
    10 3 3 0.0588 0.0588
    F2 2 204 204 1.0000 1.0000
    5 488 539 0.2990 0.3284
    8 286 304 0.0219 0.0233
    F3 2 1077 1097 0.8447 0.8604
    3 2524 2675 0.3959 0.4196
    4 6127 7392 0.1922 0.2319
    F4 5 20 21 0.3922 0.4118
    10 0 0 0 0
    F5 2 1035 1064 0.8118 0.8345
    3 2462 2677 0.3862 0.4199
    4 6072 7024 0.1905 0.2204
    F6 4 475 579 0.5821 0.7096
    6 850 1216 0.2604 0.3725
    8 1434 2055 0.1098 0.1574
    F7 6 338 366 0.8284 0.8971
    10 504 587 0.3088 0.3597
    16 485 506 0.0371 0.0388
    F8 2 678 697 0.3693 0.3796
    3 1614 1856 0.1465 0.1685
    4 3733 4589 0.0565 0.0694
    下载: 导出CSV

    表  5  NACA65016外形全局/梯度优化结果

    Table  5.   Global and gradient optimization results of NACA65016 airfoil

    结果编号 CD ${\sigma _{{\mathrm{ave}}}} $/m tmax CM
    NACA65016 0.007758 0.045612 0.1600 0.0064
    GlobalOpt1 0.007840 0.005006 0.1600 0.0500
    GradOpt1 0.007837 0.003848 0.1601 0.0503
    GlobalOpt2 0.007793 0.005540 0.1600 0.0500
    GradOpt2 0.007793 0.005540 0.1600 0.0500
    GlobalOpt3 0.007841 0.004855 0.1600 0.0500
    GradOpt3 0.007840 0.004855 0.1600 0.0500
    下载: 导出CSV

    表  6  类X47B外形气动隐身优化结果

    Table  6.   Aero/stealth optimization results of X47B geometry

    外形 CD CM ${\sigma _{{\mathrm{ave}}}} $/m2
    X47B基础外形 0.019665 0.026167 3.79510
    AS128-Bezier 0.015582 0.040593 0.54040
    X47B1 0.018425 0.005038 0.44884
    X47B2 0.019638 0.004940 0.31827
    X47B3 0.018707 0.001002 0.43848
    X47B1-grad 0.014269 0.060529 0.05901
    X47B2-grad 0.014436 0.029866 0.05864
    X47B3-grad 0.014214 0.047756 0.10260
    下载: 导出CSV
  • [1] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.

    SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013(in Chinese).
    [2] PATERSON J. Overview of low observable technology and its effects on combat aircraft survivability[J]. Journal of Aircraft, 1999, 36(2): 380-388. doi: 10.2514/2.2468
    [3] LEE D, GONZALEZ L F, SRINIVAS K, et al. Aerodynamic/RCS shape optimisation of unmanned aerial vehicles using hierarchical asynchronous parallel evolutionary algorithms[C]//Proceedings of the 24th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2006.
    [4] VINH H, DWYER H, VAN DAM C. Finite-difference algorithms for the time-domain Maxwell’s equations- A numerical approach to RCS analysis[C]//Proceedings of the 23rd Plasmadynamics and Lasers Conference. Reston: AIAA, 1992.
    [5] JOHANSSON M. Propulsion integration in an UAV[C]//Proceedings of the 24th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2006.
    [6] TAHA H E, HAJJ M R. Optimization of aerodynamic performance and stability of a stealth aircraft[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
    [7] PAPAGEORGIOU A, ÖLVANDER J, AMADORI K. Development of a multidisciplinary design optimization framework applied on UAV design by considering models for mission, surveillance, and stealth performance[C]//Proceedings of the 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017.
    [8] PERSSON B, BULL P. Empirical study of flight-dynamic influences on radar cross-section models[J]. Journal of Aircraft, 2016, 53(2): 463-474. doi: 10.2514/1.C033566
    [9] 高正红, 夏露. 飞行器外形气动与隐身协同优化设计方法研究[C]//全国流体力学青年研讨会论文集. 北京: 中国空气动力学会, 2003: 193-198.

    GAO Z H, XIA L. Research on collaborative optimization design methods for aerodynamic and stealth performance of aircraft configurations[C]//Proceedings of the National Symposium on Fluid Mechanics for Young Scholars. Beijing: Chinese Aerodynamics Research Society, 2003: 193-198(in Chinese).
    [10] 周琳, 黄江涛, 高正红. 基于离散伴随方程的三维雷达散射截面几何敏感度计算[J]. 航空学报, 2020, 41(5): 623361.

    ZHOU L, HUANG J T, GAO Z H. Three dimensional radar cross section geometric sensitivity calculation based on discrete adjoint equation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623361(in Chinese).
    [11] 张伟, 高正红, 周琳, 等. 基于代理模型全局优化的自适应参数化方法[J]. 航空学报, 2020, 41(10): 123815.

    ZHANG W, GAO Z H, ZHOU L, et al. Adaptive parameterization method for surrogate-based global optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123815(in Chinese).
    [12] 黄江涛, 周琳, 陈宪, 等. 基于NS/CFIE伴随方程的飞行器气动隐身综合优化[J]. 航空学报, 2023, 44(12): 127757.

    HUANG J T, ZHOU L, CHEN X, et al. Integrated aerodynamic and stealth optimization of aircraft based on NS/CFIE adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 127757(in Chinese).
    [13] 何开锋, 钱炜祺, 刘刚, 等. 飞行器气动隐身一体化设计方法研究[J]. 空气动力学学报, 2006, 24(2): 169-174.

    HE K F, QIAN W Q, LIU G, et al. Aircraft multi-objective design of aerodynamic and stealthy performance[J]. Acta Aerodynamica Sinica, 2006, 24(2): 169-174(in Chinese).
    [14] 何开锋, 钱炜祺, 陈坚强, 等. 基于流体力学和电磁学方程数值求解的飞行器气动隐身一体化设计[J]. 空气动力学学报, 2009, 27(2): 180-185.

    HE K F, QIAN W Q, CHEN J Q, et al. Integrated aircraft design of aerodynamic and stealthy performance with numerically solving fluid dynamics and electro-magnetics equations[J]. Acta Aerodynamica Sinica, 2009, 27(2): 180-185(in Chinese).
    [15] 焦子涵, 张彬乾, 沈冬. 翼型几何参数对隐身特性的影响研究[J]. 机械科学与技术, 2012, 31(12): 1980-1987.

    JIAO Z H, ZHANG B Q, SHEN D. Investigation on the effects of geometric parameters on airfoils’ stealth characteristics[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(12): 1980-1987(in Chinese).
    [16] 张彬乾, 罗烈, 陈真利, 等. 飞翼布局隐身翼型优化设计[J]. 航空学报, 2014, 35(4): 957-967.

    ZHANG B Q, LUO L, CHEN Z L, et al. On stealth airfoil optimization design for flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 957-967(in Chinese).
    [17] 陈曦, 白俊强, 李权. 某飞翼布局隐身飞行器的翼型优化[J]. 航空计算技术, 2013, 43(6): 46-49.

    CHEN X, BAI J Q, LI Q. Airfoil optimization of a stealth flying wind aerial vehicle[J]. Aeronautical Computing Technique, 2013, 43(6): 46-49(in Chinese).
    [18] 徐含乐, 祝小平, 周洲, 等. 基于左手材料的翼面隐身结构设计及优化[J]. 航空学报, 2014, 35(12): 3331-3340.

    XU H L, ZHU X P, ZHOU Z, et al. Design and optimization of low detectable wing structure based on LHM[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3331-3340(in Chinese).
    [19] 张乐, 周洲, 许晓平, 等. 飞翼无人机3种保形进气口进气道气动与隐身综合特性对比[J]. 航空动力学报, 2015, 30(7): 1651-1660.

    ZHANG L, ZHOU Z, XU X P, et al. Comparison on aerodynamic and stealthy performance of flying wing unmanned aerial vehicle with three conformal intake inlets[J]. Journal of Aerospace Power, 2015, 30(7): 1651-1660(in Chinese).
    [20] 张乐. 飞翼布局耦合进排气的气动与隐身综合设计研究[D]. 西安: 西北工业大学, 2016.

    ZHANG L. Study on aerodynamic and stealth integrated design of flying wing layout coupled with intake and exhaust[D]. Xi’an: Northwestern Polytechnical University, 2016(in Chinese).
    [21] 张乐, 周洲, 许晓平. 飞翼无人机保形进气道耦合进口格栅气动与隐身综合特性[J]. 航空动力学报, 2018, 33(7): 1612-1621.

    ZHANG L, ZHOU Z, XU X P. Aerodynamic and stealthy integrated performance of conformal inlet coupling entrance grille of flying wing unmanned aerial vehicle[J]. Journal of Aerospace Power, 2018, 33(7): 1612-1621(in Chinese).
    [22] ZHOU Z Y, HUANG J, WANG J J. Radar/infrared integrated stealth optimization design of helicopter engine intake and exhaust system[J]. Aerospace Science and Technology, 2019, 95: 105483. doi: 10.1016/j.ast.2019.105483
    [23] ZINGG D W, NEMEC M, PULLIAM T H. A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization[J]. European Journal of Computational Mechanics, 2008, 17(1-2): 103-126. doi: 10.3166/remn.17.103-126
    [24] CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6): 1342-1354. doi: 10.2514/1.J051835
    [25] BUCKLEY H P, ZHOU B Y, ZINGG D W. Airfoil optimization using practical aerodynamic design requirements[C]//Proceedings of the 27th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010.
    [26] STREUBER G M, ZINGG D W. Evaluating the risk of local optima in aerodynamic shape optimization[J]. AIAA Journal, 2021, 59(1): 75-87. doi: 10.2514/1.J059826
    [27] LEUNG T, ZINGG D. Single-and multi-point aerodynamic shape optimization using a parallel Newton-Krylov approach[C]//Proceedings of the 19th AIAA Computational Fluid Dynamics. Reston: AIAA, 2009.
    [28] 黄江涛, 高正红, 余婧, 等. 大型民用飞机气动外形典型综合设计方法[J]. 航空学报, 2019, 40(2): 522369.

    HUANG J T, GAO Z H, YU J, et al. A typical integrated design method for aerodynamic shape optimization of large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522369(in Chinese).
    [29] 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4): 554-562.

    HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4): 554-562(in Chinese).
    [30] 黄江涛, 刘刚, 高正红, 等. 飞行器多学科耦合伴随体系的现状与发展趋势[J]. 航空学报, 2020, 41(5): 623404.

    HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623404(in Chinese).
    [31] ZHOU L, HUANG J T, GAO Z H, et al. Three-dimensional aerodynamic/stealth optimization based on adjoint sensitivity analysis for scattering problem[J]. AIAA Journal, 2020, 58(6): 2702-2715. doi: 10.2514/1.J059136
    [32] 蔡强明. 金属—介质目标电磁散射与辐射的高阶矩量法及快速算法研究[D]. 成都: 电子科技大学, 2017.

    CAI Q M. Research on high-order moment method and fast algorithm of electromagnetic scattering and radiation from metal-dielectric target[D]. Chengdu: University of Electronic Science and Technology of China, 2017(in Chinese).
    [33] 胡俊. 复杂目标矢量电磁散射的高效方法: 快速多极子方法及其应用[D]. 成都: 电子科技大学, 2000.

    HU J. Efficient method of vector electromagnetic scattering from complex targets-fast multipole method and its application[D]. Chengdu: University of Electronic Science and Technology of China, 2000(in Chinese).
    [34] 聂在平, 胡俊, 姚海英, 等. 用于复杂目标三维矢量散射分析的快速多极子方法[J]. 电子学报, 1999, 27(6): 104-109.

    NIE Z P, HU J, YAO H Y, et al. The fast multipole methods for vector analysis of scattering from 3-dimensional objects with complex structure[J]. Acta Electronica Sinica, 1999, 27(6): 104-109(in Chinese).
    [35] ZHIGLJAVSKY A, ŽILINSKAS A. Stochastic global optimization [M]. Berlin: Springer, 2008.
    [36] JOE S, KUO F Y. Remark on algorithm 659[J]. ACM Transactions on Mathematical Software, 2003, 29(1): 49-57. doi: 10.1145/641876.641879
    [37] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Piscataway: IEEE Press, 2002: 39-43.
    [38] LI X D. A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio[C]//Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2007: 78-85.
    [39] LI X D. Niching without niching parameters: particle swarm optimization using a ring topology[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(1): 150-169. doi: 10.1109/TEVC.2009.2026270
    [40] CHENG S, QIN Q D, WU Z, et al. Multimodal optimization using particle swarm optimization algorithms: CEC 2015 competition on single objective multi-niche optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2015: 1075-1082.
    [41] QU B Y, SUGANTHAN P N, DAS S. A distance-based locally informed particle swarm model for multimodal optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 387-402. doi: 10.1109/TEVC.2012.2203138
    [42] LIANG J J, QU B Y, SUGANTHAN P N, et al. Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization[J]. Technical Report 201411A, 2014, 29: 625-640.
    [43] 张伟, 赵轲, 夏露, 等. 飞翼布局翼型系列设计进展[J]. 空气动力学学报, 2021, 39(6): 37-52.

    ZHANG W, ZHAO K, XIA L, et al. A multi-disciplinary global/local optimization method for flying-wing airfoils design[J]. Acta Aerodynamica Sinica, 2021, 39(6): 37-52(in Chinese).
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  125
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 录用日期:  2023-10-27
  • 网络出版日期:  2024-01-18
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答