留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仪表着陆系统航向信标保护区的划设

倪育德 李欣欣 刘瑞华 郭建立 王艳阳

倪育德,李欣欣,刘瑞华,等. 仪表着陆系统航向信标保护区的划设[J]. 北京航空航天大学学报,2025,51(11):3617-3629 doi: 10.13700/j.bh.1001-5965.2023.0592
引用本文: 倪育德,李欣欣,刘瑞华,等. 仪表着陆系统航向信标保护区的划设[J]. 北京航空航天大学学报,2025,51(11):3617-3629 doi: 10.13700/j.bh.1001-5965.2023.0592
NI Y D,LI X X,LIU R H,et al. Delineation of instrument landing system localizer protection area[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3617-3629 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0592
Citation: NI Y D,LI X X,LIU R H,et al. Delineation of instrument landing system localizer protection area[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3617-3629 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0592

仪表着陆系统航向信标保护区的划设

doi: 10.13700/j.bh.1001-5965.2023.0592
基金项目: 

国家自然科学基金(U2233215)

详细信息
    通讯作者:

    E-mail:rhliu_cauc@163.com

  • 中图分类号: V249.3

Delineation of instrument landing system localizer protection area

Funds: 

National Natural Science Foundation of China (U2233215)

More Information
  • 摘要:

    仪表着陆系统(ILS)保护区是保证飞机安全着陆的重要屏障。针对ILS中航向信标(LOC)保护区划设理论依据研究不足的问题,依据《国际民用航空公约》附件10的要求,利用物理光学(PO)法系统研究了LOC保护区的划设。对LOC辐射远场和近场进行划分,并推导求解LOC近场方向图,避免障碍物处于近场时仍使用远场条件计算带来的误差;结合跑道周围停止等待飞机的垂直表面特征进行面元划分,使用物理光学法计算这些飞机作为障碍物在不同位置及转向时造成的电磁散射场,根据其对进近着陆飞机接收信号调制度差(DDM)的影响程度划设LOC保护区;分别使用20阵元与24阵元LOC,以A380、B737-8与B787-8为障碍物进行LOC保护区划设仿真实验。实验结果与《国际民用航空公约》附件10规定的保护区具有较大接近度,敏感区差距最大处相差约100 m,临界区差距最大处相差约50 m;与专业软件ATOLL的仿真结果相比,保护区的走势基本相同。实验结果证明了所提思想方法、理论建模及技术处理的正确性,可以为LOC保护区划设提供重要理论依据。

     

  • 图 1  LOC阵列天线

    Figure 1.  LOC array antenna

    图 2  《国际民用航空公约》附件10规定的LOC DDM弯曲幅度范围

    Figure 2.  Specified bending amplitude range of LOC DDM by Annex 10 of the Convention on International Civil Aviation

    图 3  机载接收机接收LOC信号示意

    Figure 3.  LOC signal reception by on-board receiver

    图 4  等幅同相二元阵下近场接收信号矢量图

    Figure 4.  Vector diagram of near-field received signals under constant-amplitude in-phase binary array

    图 5  NM 24阵元LOC辐射COU CSB远近场方向图

    Figure 5.  Far-field and near-field radiation patterns of NM 24-element LOC array (COU CSB)

    图 6  NM 20阵元LOC辐射COU CSB远近场方向图

    Figure 6.  Far-field and near-field radiation patterns of NM 20-element LOC array (COU CSB)

    图 7  LOC散射场求解示意

    Figure 7.  LOC scattering field solution

    图 8  Gordon面元积分

    Figure 8.  Gordon panel integration

    图 9  LOC保护区划设实验流程

    Figure 9.  LOC protection area experiment procedure

    图 10  实验过程示意图

    Figure 10.  Experimental process

    图 11  NM 20阵元LOC敏感区划设时不同点的DDM曲线

    Figure 11.  DDM curves at different points during sensitive area delineation of NM 20-element LOC

    图 12  NM 20阵元LOC临界区划设时不同点的DDM曲线

    Figure 12.  DDM curves at different points during critical area delineation of NM 20-element LOC

    图 13  不同方法得到的NM 20阵元LOC保护区对比

    Figure 13.  Comparison of NM 20-element LOC protection areas obtained by different methods

    图 14  NM 24阵元LOC敏感区划设时不同点的DDM曲线

    Figure 14.  DDM curves at different points during sensitive area delineation of NM 24-element LOC

    图 15  NM 24阵元LOC临界区划设时不同点的DDM曲线

    Figure 15.  DDM curves at different points during critical area delineation of NM 24-element LOC

    图 16  不同方法得到的NM 24阵元LOC保护区对比

    Figure 16.  Comparison of NM 24-element LOC protection area obtained by different methods

    图 17  B737-8条件下NM 20阵元LOC保护区

    Figure 17.  NM 20-element LOC protection area under B737-8 condition

    图 18  相同LOC阵列天线不同障碍物条件下LOC保护区

    Figure 18.  LOC protection areas of same LOC array antenna under different obstacle conditions

    表  1  实验设置

    Table  1.   Experimental setup

    LOC型号 障碍物设置
    临界区 敏感区
    NM 20阵元LOC A380机身和尾翼 A380尾翼
    NM 24阵元LOC A380机身和尾翼 A380尾翼
    NM 20阵元LOC B737-8机身和尾翼 B737-8尾翼
    NM 20阵元LOC B787-8机身和尾翼 B787-8尾翼
    下载: 导出CSV

    表  2  不同障碍物的近似尺寸

    Table  2.   Approximate dimensions of different obstacles

    飞机
    型号
    尾翼近似尺寸/m 机身近似尺寸/m
    离地高度 离地高度
    A380 8.5 14 10 72.5 8.5 1.5
    B737-8 3 8.5 4 39.5 2.7 1.3
    B787-8 6.7 9 8 56.7 6 2
    下载: 导出CSV

    表  3  NM 20阵元LOC保护区边界坐标

    Table  3.   Boundary coordinates of NM 20-element LOC protection area

    保护区 x/m y/m
    敏感区 1000 100
    1400 140
    1800 185
    2200 180
    2600 215
    3000 250
    3400 280
    3800 300
    4200 245
    临界区 200 85
    300 95
    400 100
    500 105
    600 110
    700 110
    下载: 导出CSV

    表  4  NM 24阵元LOC保护区边界坐标

    Table  4.   Boundary coordinates of NM 24-element LOC protection area

    保护区 x/m y/m
    敏感区 1000 110
    1400 155
    1800 165
    2200 200
    2600 240
    3000 280
    3400 310
    3800 335
    4200 260
    临界区 200 85
    300 90
    400 100
    500 105
    600 110
    700 110
    下载: 导出CSV

    表  5  B737-8为障碍物时NM 20阵元LOC保护区边界坐标

    Table  5.   Boundary coordinates of NM 20-element LOC protection area with B737-8 as obstacle

    保护区 x/m y/m
    敏感区 1000 90
    1400 125
    1800 150
    2200 175
    2600 205
    3000 235
    3400 255
    3800 245
    临界区 50 40
    100 45
    150 45
    200 55
    250 45
    下载: 导出CSV

    表  6  B787-8为障碍物时NM 20阵元LOC保护区边界坐标

    Table  6.   Boundary coordinates of NM 20-element LOC protection area with B787-8 as obstacle

    保护区 x/m y/m
    敏感区1000135
    1400150
    1800190
    2200230
    2600270
    3000310
    3400340
    3800260
    4200210
    临界区10065
    20075
    30095
    40095
    50080
    600115
    下载: 导出CSV
  • [1] 鲁合德, 张强. 高铁弓网电弧对飞机进近着陆的电磁干扰影响[J]. 航空学报, 2020, 41(10): 324036.

    LU H D, ZHANG Q. EMI effect of pantograph catenary arc of high-speed railway on aircraft approach landing[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 324036(in Chinese).
    [2] 倪育德, 张振楠, 刘瑞华, 等. GBAS与ILS联合导航系统数据融合方法与验证[J]. 信号处理, 2022, 38(11): 2385-2399.

    NI Y D, ZHANG Z N, LIU R H, et al. Data fusion method of GBAS and ILS joint navigation system[J]. Journal of Signal Processing, 2022, 38(11): 2385-2399(in Chinese).
    [3] 倪育德, 卢丹, 王颖, 等. 导航原理与系统[M]. 北京: 清华大学出版社, 2015: 238-241.

    NI Y D, LU D, WANG Y, et al. Navigation principles and systems[M]. Beijing: Tsinghua University Press, 2015: 238-241(in Chinese).
    [4] 倪育德, 于颖丽, 刘瑞华. 保护区内地形对ILS下滑信标辐射场的影响[J]. 信号处理, 2022, 38(9): 1892-1902.

    NI Y D, YU Y L, LIU R H. Influence of terrain in protected area on radiation field of glide slope of ILS[J]. Journal of Signal Processing, 2022, 38(9): 1892-1902(in Chinese).
    [5] International Civil Aviation Organization. Aeronautical telecommunications. Annex 10 to the convention on international civil aviation. Volume Ⅰ(6th edition)[S]. Montreal: International Civil Aviation Organization, 2006.
    [6] International Civil Aviation Organization. Aeronautical telecommunications. Annex 10 to the convention on international civil aviation. Volume Ⅰ(7th edition)[S]. Montreal: International Civil Aviation Organization, 2018.
    [7] Department of Transportation Federal Aviation Administration. Siting criteria for instrument landing systems: FAA ORDER 6750.16E[S]. Washington, D. C. : Federal Aviation Administration, 2014.
    [8] 中国民用航空局. 民用航空通信导航监视台(站)设置场地规范 第1部分: 导航: MH/T 4003.1—2021[S]. 北京: 中国民用航空局, 2021.

    Civil Aviation Administration of China. Specification for aeronautical communication navigation and surveillance station siting criteria-Part 1: navigation: MH/T 4003.1—2021[S]. Beijing: Civil Aviation Administration of China, 2021(in Chinese).
    [9] 刘勇, 吴德伟, 王永胜. 仪表着陆系统辐射场型的场地影响分析[J]. 无线电通信技术, 2004, 30(2): 31-33. doi: 10.3969/j.issn.1003-3114.2004.02.012

    LIU Y, WU D W, WANG Y S. Site impact analysis of radiation pattern of instrument landing system[J]. Radio Communications Technology, 2004, 30(2): 31-33(in Chinese). doi: 10.3969/j.issn.1003-3114.2004.02.012
    [10] 李紫丹. 基于回波模型多径效应对航向信标系统的影响研究[J]. 信息通信, 2015, 28(3): 18.

    LI Z D. Research on the influence of multipath effect on heading beacon system based on echo model[J]. Information & Communications, 2015, 28(3): 18(in Chinese).
    [11] THAIN A, ESTIENNE J P, PERES G, et al. Comparisons of different approaches for ILS simulation[C]//Proceedings of the 4th European Conference on Antennas and Propagation. Piscataway: IEEE Press, 2010: 1-5.
    [12] THAIN A, ESTIENNE J P, ROBERT J, et al. A solution for ILS disturbance due to a building[C]//Proceedings of the 6th European Conference on Antennas and Propagation. Piscataway: IEEE Press, 2012: 2392-2395.
    [13] 朱峰, 翁文雯, 谢雨轩, 等. 多径效应对航向信标系统电磁环境影响分析[J]. 系统工程与电子技术, 2019, 41(12): 2703-2709.

    ZHU F, WENG W W, XIE Y X, et al. Analysis of influence of multipath effect on electromagnetic environment of localizer[J]. Systems Engineering and Electronics, 2019, 41(12): 2703-2709(in Chinese).
    [14] 陈超, 黄裕文. 仪表着陆系统下滑信号结构分析与改善[J]. 现代雷达, 2020, 42(7): 17-22.

    CHEN C, HUANG Y W. Analysis and improvement of glide signal structure of instrument landing system[J]. Modern Radar, 2020, 42(7): 17-22(in Chinese).
    [15] WANG Q Q, SHEN Z Y, CHENG X M, et al. A fast ILS electromagnetic covering analysis method for new obstacles impact at expanded airport[C]//Proceedings of the IEEE/AIAA 38th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2019: 1-5.
    [16] 费钟阳, 蒋相闻, 招启军. 基于动态RCS特征相似的直升机靶机旋翼设计[J]. 航空学报, 2022, 43(7): 125465.

    FEI Z Y, JIANG X W, ZHAO Q J. Design of helicopter target rotor based on similar dynamic RCS characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125465(in Chinese).
    [17] REDLICH R W, GORMAN J T. Disturbance of ILS localizer signals by reflections from large hangers[J]. IEEE Transactions on Aerospace and Electronic Systems, 1969, AES-5(6): 1001-1002.
    [18] SHIH S L. LS localizer multipath analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(1): 54-60.
    [19] HONDA J, YOKOYAMA H, TAJIMA H, et al. Influences of 3D aircraft model to ILS localizer[C]//Proceedings of the 10th International Conference on Complex, Intelligent, and Software Intensive Systems. Piscataway: IEEE Press, 2016: 180-185.
    [20] HONDA J. Influences of scattered field caused by buildings to ILS localizer in Airport[C]//Proceedings of the International Symposium on Antennas and Propagation. Piscataway: IEEE Press, 2015: 1-4.
    [21] 赵修斌, 戴传金, 许进, 等. 进近着陆系统多径效应仿真设计与实现[J]. 系统仿真学报, 2006, 18(11): 3316-3319. doi: 10.3969/j.issn.1004-731X.2006.11.078

    ZHAO X B, DAI C J, XU J, et al. Design of simulations for multipath effect of the approaching landing system and implementation[J]. Journal of System Simulation, 2006, 18(11): 3316-3319(in Chinese). doi: 10.3969/j.issn.1004-731X.2006.11.078
    [22] 吴华新, 赵修斌, 陈校平, 等. PO分米波着陆系统多径环境分析和仿真[J]. 火力与指挥控制, 2011, 36(8): 103-106. doi: 10.3969/j.issn.1002-0640.2011.08.026

    WU H X, ZHAO X B, CHEN X P, et al. Analysis and simulation of multi-path environment for decimeter wave instrument landing system based on physical optics[J]. Fire Control & Command Control, 2011, 36(8): 103-106(in Chinese). doi: 10.3969/j.issn.1002-0640.2011.08.026
    [23] 吴华新, 赵修斌, 戴传金. 基于PO的进近着陆系统信道环境分析和仿真预测[J]. 系统仿真学报, 2012, 24(2): 414-418.

    WU H X, ZHAO X B, DAI C J. Analysis and simulation prediction on approach landing system channel environment based on physical optics[J]. Journal of System Simulation, 2012, 24(2): 414-418(in Chinese).
    [24] GONG F X, GUO F Y, MA Y Q. Analysis of electromagnetic interference on localizer beam using in parallel runway[C]//Proceedings of the 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Piscataway: IEEE Press, 2011: 562-565.
    [25] 倪育德, 于颖丽, 刘瑞华, 等. 大型障碍物影响下航向信标敏感区的划设[J]. 系统工程与电子技术, 2023, 45(2): 360-372.

    NI Y D, YU Y L, LIU R H, et al. Setting the sensitive area of localizer under the influence of large obstacles[J]. Systems Engineering and Electronics, 2023, 45(2): 360-372(in Chinese).
    [26] 赵京城, 娄长玉, 李家碧, 等. 一种方形腔体的目标散射特性及测量方法[J]. 北京航空航天大学学报, 2022, 48(12): 2415-2424.

    ZHAO J C, LOU C Y, LI J B, et al. Scattering characteristics and measurement method of a square cavity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2415-2424(in Chinese).
    [27] HUO J C, XU L, SHI X W, et al. An accelerated PO for EM scattering from electrically large targets[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2300-2304. doi: 10.1109/LAWP.2021.3108786
    [28] 郭霄, 杨青真, 文振华, 等. 吸波材料脱落对球面收敛喷管电磁散射特性的影响[J]. 航空学报, 2021, 42(6): 224466.

    GUO X, YANG Q Z, WEN Z H, et al. Influence of RAM abscission on electromagnetic scattering characterisitic of cavity[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 224466(in Chinese).
    [29] 苏东林, 崔朔, 白江飞, 等. 复杂电磁环境辐射-散射耦合场快速预估方法[J]. 北京航空航天大学学报, 2022, 48(9): 1553-1560.

    SU D L, CUI S, BAI J F, et al. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560(in Chinese).
    [30] XIAO D H, GUO L X, LIU W, et al. Efficient RCS prediction of the conducting target based on physics-inspired machine learning and experimental design[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(4): 2274-2289. doi: 10.1109/TAP.2020.3027594
    [31] 秦远田, 孙汗青, 岳鑫. 微小卫星隐身构型设计及优化分析[J]. 北京航空航天大学学报, 2022, 48(11): 2102-2110.

    QIN Y T, SUN H Q, YUE X. Stealthy configuration design and optimization analysis of microsatellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2102-2110(in Chinese).
    [32] 中国民用航空总局. 航空无线电导航设备 第1部分: 仪表着陆系统(ILS)技术要求: MH/T 4006.1—1998[S]. 北京: 中国民用航空总局, 1998.

    General Administration of Civil Aviation of China. Aeronautical radio navigation aids. Part 1: technical requirements for instrument landing system (ILS): MH/T 4006.1—1998[S]. Beijing: General Administration of Civil Aviation of China, 1998(in Chinese).
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  75
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 录用日期:  2023-10-13
  • 网络出版日期:  2023-11-20
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答