留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲面等值分割几何认知计算方法

胡靖尘 郑国磊

胡靖尘,郑国磊. 曲面等值分割几何认知计算方法[J]. 北京航空航天大学学报,2025,51(11):3842-3851 doi: 10.13700/j.bh.1001-5965.2023.0593
引用本文: 胡靖尘,郑国磊. 曲面等值分割几何认知计算方法[J]. 北京航空航天大学学报,2025,51(11):3842-3851 doi: 10.13700/j.bh.1001-5965.2023.0593
HU J C,ZHENG G L. Geometric cognitive computing method for sculptured surface iso-segmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3842-3851 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0593
Citation: HU J C,ZHENG G L. Geometric cognitive computing method for sculptured surface iso-segmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3842-3851 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0593

曲面等值分割几何认知计算方法

doi: 10.13700/j.bh.1001-5965.2023.0593
详细信息
    通讯作者:

    E-mail:zhengguolei@buaa.edu.cn

  • 中图分类号: V260.5

Geometric cognitive computing method for sculptured surface iso-segmentation

More Information
  • 摘要:

    基于界点跟踪的曲面等值分割方法具有通用性,但复杂曲面等值分割效率较低。为此,提出曲面等值分割几何认知计算方法。对输入面进行等参数网格采样并计算边界界点;从采样点中提取界算组并计算、识别界点;从界点中提取界点组并构造、识别界边;从界边中提取、识别内界环,以此分割输入面并对所得等值面进行识别。以主曲率、高斯曲率、平均曲率和可加工性为面点属性设计分割条件集并进行大量实例测试。实验结果表明:所提方法的分割效率比现有方法平均提高了38.44%,所提方法在复杂曲面分割应用中具有较高的分割效率。

     

  • 图 1  界点、界边、界环和等值面

    Figure 1.  Boundary point, boundary edge, boundary loop and iso-surface

    图 2  网顶点、网边点和网内点

    Figure 2.  Grid vertex point, grid edge point and grid unit point

    图 3  网顶点的相邻点

    Figure 3.  Adjacent points of grid vertex

    图 4  网边点的相邻点

    Figure 4.  Adjacent points of grid edge point

    图 5  网内点的相邻点

    Figure 5.  Adjacent points of grid unit point

    图 6  界点

    Figure 6.  Boundary point

    图 7  界点组

    Figure 7.  Boundary point group

    图 8  界边

    Figure 8.  Boundary edge

    图 9  界环

    Figure 9.  Boundary loop

    图 10  等值面

    Figure 10.  Iso-surface

    图 11  本文方法流程

    Figure 11.  Flow of the proposed method

    图 12  面采样过程

    Figure 12.  Surface sampling procedure

    图 13  边界边构造

    Figure 13.  Boundary edge construction

    图 14  内界环嵌套

    Figure 14.  Nesting of inner boundary loop

    图 15  面${s_i}$分割结果和优化结果(根据${C_1}$)

    Figure 15.  Surface segmentation results and optimization results for ${s_i}$ (according to ${C_1}$)

    图 16  si分割结果和高斯曲率色标(根据C2

    Figure 16.  Surface segmentation results and Gaussian curvature color scale for si (according to C2)

    图 17  面${s_{12}}$分割结果

    Figure 17.  Surface segmentation result for ${s_{12}}$

    表  1  基础边线关系示意图及判断方法

    Table  1.   Judgment method of basic edge-line relationship

    基础
    边线关系
    示意图 判断方法
    分离 ① ${m_1} = 1$,${m_2} = 1$
    ② $x = 1 \wedge y = 0 \wedge {\textit{z}} = n + 1 \wedge w = 0$
    ③ ${h_1} = n + 1 \wedge {h_2} = 0$
    相交 ① ${m_1} = 1$,${m_2} = 1$
    ② $ y = 0 \wedge w = 0 \vee $
    $ y \ne 0 \wedge w \ne 0 \wedge w - y \leqslant 1 \vee $
    $ y \ne 0 \wedge w \ne 0 \wedge w - y \geqslant 2 \wedge {h_2} = 2 $
    单搭接 ① 当${m_1} \gt 1$,${m_2} = 1$时,
    $x = 2 \wedge y = 1 \wedge {\textit{z}} = n + 1 \wedge w = 1$
    ② 当${m_1} = 1$,${m_2} \gt 1$时,
    $x = 1 \wedge y = n + 1 \wedge {\textit{z}} = n \wedge w = n + 1$
    ③ ${h_1} = n \wedge {h_2} = 1$
    双搭接 ① ${m_1} \gt 1$,${m_2} \gt 1$
    ② $x = 2 \wedge y = 1 \wedge {\textit{z}} = n \wedge w = n + 1$
    ③ ${h_1} = n - 1 \wedge {h_2} = 2$
    部分重合 ① 当${m_1} = 1$,${m_2} = 1$时,
    $\begin{gathered} y \ne 0 \wedge w \ne 0 \wedge w - y \geqslant 2 \wedge \\[-5pt] {h_2} = w - y + 1 \\ \end{gathered} $
    ② 当${m_1} \gt 1$,${m_2} = 1$时,
    $ \begin{gathered} x \gt 2 \wedge y = 1 \wedge {\textit{z}} = n + 1 \wedge w \gt 1 \wedge \\[-5pt] x - w = 1 \\\end{gathered} $
    ③ 当${m_1} = 1$,${m_2} \gt 1$时,
    $ \begin{gathered} x = 1 \wedge y \lt n + 1 \wedge {\textit{z}} \lt n \wedge w = n + 1 \wedge \\[-5pt] y - {\textit{z}} = 1 \\ \end{gathered} $
    包含重合 ① ${m_1} \gt 1$,${m_2} \gt 1$
    ② $x = 0 \wedge y = 1 \wedge {\textit{z}} = 0 \wedge w = n + 1$
    ③ ${h_1} = 0 \wedge {h_2} = n + 1$
    下载: 导出CSV

    表  2  混合边线关系

    Table  2.   Mixed edge-line relationship

    混合边线关系 示意图
    相交与单搭接混合
    相交与双搭接混合
    相交与部分重合混合
    单搭接与部分重合混合
    双搭接与部分重合混合
    下载: 导出CSV

    表  3  边界关系

    Table  3.   Edge-boundary relationship

    边界关系 示意图
    分离
    端点搭接 单端点搭接
    双端点搭接
    边内搭接 单边内搭接
    多边内搭接
    混合搭接
    下载: 导出CSV

    表  4  s4s11分割数据(根据C2

    Table  4.   Surface segmentation data for s4 to s11 (according to C2)

    曲面 $ N $ $ {\mathrm{Err}}/{\mathrm{m}}{{\mathrm{m}}}^{-1} $ $ T/{\mathrm{s}} $
    $ {s}_{4} $ 64 2.635×10−6 2.142
    $ {s}_{5} $ 261 2.609×10−6 8.602
    $ {s}_{6} $ 386 1.786×10−4 9.998
    $ {s}_{7} $ 314 5.847×10−6 6.760
    $ {s}_{8} $ 305 1.052×10−5 8.596
    $ {s}_{9} $ 232 7.690×10−6 7.637
    $ {s}_{10} $ 257 4.762×10−6 9.622
    $ {s}_{11} $ 330 3.919×10−6 10.265
    下载: 导出CSV

    表  5  si分割数据对比(根据C2

    Table  5.   Surface segmentation data comparison for $ {s_{i}} $ (according to C2)

    曲面 方法 $N$ ${\mathrm{Err}}/{\mathrm{m}}{{\mathrm{m}}^{ - 1}}$ $T/{\mathrm{s}}$
    ${s_4}$ 文献[17] 88 2.306×10−7 3.267
    本文方法 64 2.635×10−6 2.142
    ${s_5}$ 文献[17] 344 2.335×10−6 13.763
    本文方法 261 2.609×10−6 8.602
    ${s_6}$ 文献[17] 502 1.307×10−4 17.662
    本文方法 386 1.786×10−4 9.998
    下载: 导出CSV

    表  6  面$ {s_{12}} $分割数据对比

    Table  6.   Surface segmentation data comparison for $ {s_{12}} $

    方法 $\tau /{\mathrm{mm}}$ $N$ $T/{\mathrm{s}}$
    文献[13] 6 13 1.07
    4 17 1.22
    2 33 1.75
    1 65 2.62
    文献[17] 6 14 1.18
    4 19 1.48
    2 35 2.26
    1 67 3.75
    本文方法 6 12 1.64
    4 16 2.48
    2 32 6.07
    1 64 16.79
    下载: 导出CSV
  • [1] SUNIL V B, PANDE S S. Automatic recognition of features from freeform surface CAD models[J]. Computer-Aided Design, 2008, 40(4): 502-517. doi: 10.1016/j.cad.2008.01.006
    [2] WANG J, WANG Z G, ZHU W D, et al. Recognition of freeform surface machining features[J]. Journal of Computing and Information Science in Engineering, 2010, 10(4): 041006. doi: 10.1115/1.3527075
    [3] WANG J, YU Z Y. Geometric decomposition of 3D surface meshes using Morse theory and region growing[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(9): 1091-1103.
    [4] 王洪申, 张树生, 白晓亮, 等. 基于区域分割的三维自由曲面相似性评价算法[J]. 计算机辅助设计与图形学学报, 2011, 23(2): 305-313.

    WANG H S, ZHANG S S, BAI X L, et al. 3D freeform surface similarity assessment algorithm based on region segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(2): 305-313(in Chinese).
    [5] 林俊锋, 黄常标, 祁杨停. 复杂三角网格模型分治加工刀具轨迹生成[J]. 计算机辅助设计与图形学学报, 2015, 27(2): 362-370.

    LIN J F, HUANG C B, QI Y T. Tool path generation of partition machining for complex triangular mesh model[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(2): 362-370(in Chinese).
    [6] CHEN Z C, DONG Z M, VICKERS G W. Automated surface subdivision and tool path generation for 31212-axis CNC machining of sculptured parts[J]. Computers in Industry, 2003, 50(3): 319-331. doi: 10.1016/S0166-3615(03)00019-8
    [7] LIU X, LI Y G, LI Q. A region-based 3+2-axis machining toolpath generation method for freeform surface[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1): 1149-1163.
    [8] XU K, LI Y G. Region based five-axis tool path generation for freeform surface machining via image representation[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57: 230-240. doi: 10.1016/j.rcim.2018.12.006
    [9] PARK S C, CHOI B K. Boundary extraction algorithm for cutting area detection[J]. Computer-Aided Design, 2001, 33(8): 571-579.
    [10] YANG J Z, WANG Q F, HUANG Z D, et al. Cutting area extraction from a Z-map model[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(9): 1010-1016.
    [11] VAN TUONG N, POKORNY P. A practical approach for partitioning free-form surfaces[J]. International Journal of Computer Integrated Manufacturing, 2010, 23(11): 992-1001. doi: 10.1080/0951192X.2010.506656
    [12] GUPTA R K, GURUMOORTHY B. Automatic extraction of free-form surface features(FFSFs)[J]. Computer-Aided Design, 2012, 44(2): 99-112. doi: 10.1016/j.cad.2011.09.012
    [13] 陈俊, 郑国磊, 罗智波. 面向数控加工的面等值自动分片方法[J]. 计算机辅助设计与图形学学报, 2015, 27(5): 924-929.

    CHEN J, ZHENG G L, LUO Z B. A method of automatic iso-surface segmentation for NC machining[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(5): 924-929(in Chinese).
    [14] LIU X, LI Y G, MA S B, et al. A tool path generation method for freeform surface machining by introducing the tensor property of machining strip width[J]. Computer-Aided Design, 2015, 66: 1-13. doi: 10.1016/j.cad.2015.03.003
    [15] KUMAZAWA G H, FENG H Y, BARAKCHI FARD M J. Preferred feed direction field: a new tool path generation method for efficient sculptured surface machining[J]. Computer-Aided Design, 2015, 67: 1-12.
    [16] HUANG R, JIANG J F, HE K J, et al. An effective freeform surface retrieval approach for potential machining process reuse[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9): 4341-4358.
    [17] 胡靖尘, 郑国磊. CAD曲面等值分割方法[J]. 计算机辅助设计与图形学学报, 2021, 33(1): 153-160.

    HU J C, ZHENG G L. CAD surface iso-segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(1): 153-160(in Chinese).
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  68
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 录用日期:  2024-02-08
  • 网络出版日期:  2024-02-26
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答