留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多狭缝高速开关阀的电-机械转换器动态特性

陈淑梅 陈绍荣 李启正 黄惠 李雨铮 黄秋芳

陈淑梅,陈绍荣,李启正,等. 多狭缝高速开关阀的电-机械转换器动态特性[J]. 北京航空航天大学学报,2025,51(11):3630-3640 doi: 10.13700/j.bh.1001-5965.2023.0594
引用本文: 陈淑梅,陈绍荣,李启正,等. 多狭缝高速开关阀的电-机械转换器动态特性[J]. 北京航空航天大学学报,2025,51(11):3630-3640 doi: 10.13700/j.bh.1001-5965.2023.0594
CHEN S M,CHEN S R,LI Q Z,et al. Dynamic characteristics of electro-mechanical transducer with multi-slit armature for high-speed on/off valve[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3630-3640 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0594
Citation: CHEN S M,CHEN S R,LI Q Z,et al. Dynamic characteristics of electro-mechanical transducer with multi-slit armature for high-speed on/off valve[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3630-3640 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0594

多狭缝高速开关阀的电-机械转换器动态特性

doi: 10.13700/j.bh.1001-5965.2023.0594
基金项目: 

国家重点研发计划(2019YFB2005103);国家自然科学基金(52105053);福建省高校产学研联合创新项目(2022H6007)

详细信息
    通讯作者:

    E-mail:huihuang@fzu.edu.cn

  • 中图分类号: TH137

Dynamic characteristics of electro-mechanical transducer with multi-slit armature for high-speed on/off valve

Funds: 

National Key Research and Development Program of China (2019YFB2005103); National Natural Science Foundation of China (52105053); Fujian Province University Industry-University-Research Joint Innovation Project (2022H6007)

More Information
  • 摘要:

    高速开关阀(HSV)在航空航天领域广泛运用,但现有高速开关阀的涡流大,导致其响应时间难以提升,且响应时间受衔铁直径、复位弹簧预紧力等多个结构参数交互影响的规律复杂。针对该问题,分析了涡流对高速开关阀动态特性的影响,在此基础上设计了一种降低涡流损耗的多狭缝衔铁结构,可加快高速开关阀的电-机械转换器的启闭,并基于该结构分析了衔铁直径、线圈匝数、复位弹簧预紧力、复位弹簧刚度交互作用对电-机械转换器启闭特性的影响规律,通过灰色关联度量化各因素与启闭时间的关联度。研究表明:多狭缝衔铁结构可以减少50.07%的涡流损耗,可缩短启闭时间15%,同时发现复位弹簧预紧力与闭合时间关联度最高,衔铁直径与复位时间关联度最高,可为高速开关阀的电-机械转换器结构优化和动态特性进一步提升提供依据。

     

  • 图 1  高速开关阀工作原理

    Figure 1.  Working principle of high-speed on/off valve

    图 2  电-机械转换器的仿真结构

    Figure 2.  Simulation structure of electro-mechanical transducer

    图 3  电-机械转换器的网格划分

    Figure 3.  Mesh of electro-mechanical transducer

    图 4  电磁场设置

    Figure 4.  Electromagnetic field settings

    图 5  有无涡流条件下的不同时刻磁场云图

    Figure 5.  Magnetic field distribution at different times with and without eddy current

    图 6  有无涡流的动态特性对比

    Figure 6.  Comparison of dynamic characteristics with and without eddy current

    图 7  多狭缝结构

    Figure 7.  Multi-slit structure

    图 8  原始结构和多狭缝结构涡流密度

    Figure 8.  Eddy current density of original and multi-slit structures

    图 9  原始结构和多狭缝结构衔铁涡流损耗功率

    Figure 9.  Power loss of armature eddy current of original and multi-slit structures

    图 10  低涡流结构改进前后动态性能对比

    Figure 10.  Comparison of dynamic performance before and after low-eddy-current structural improvement

    图 11  衔铁直径和复位弹簧预紧力对响应时间的影响

    Figure 11.  Effects of armature diameter and preload of return spring on response time

    图 12  衔铁直径和复位弹簧刚度对响应时间的影响

    Figure 12.  Effects of armature diameter and stiffness of return spring on response time

    图 13  衔铁直径和线圈匝数对响应时间的影响

    Figure 13.  Effects of armature diameter and coil turns on response time

    图 14  复位弹簧预紧力和复位弹簧刚度对响应时间的影响

    Figure 14.  Effects of preload and stiffness of return spring on response time

    图 15  复位弹簧预紧力和线圈匝数对响应时间的影响

    Figure 15.  Effects of preload of return spring and coil turns on response time

    图 16  复位弹簧刚度和线圈匝数对响应时间的影响

    Figure 16.  Effects of stiffness of return spring and coil turns on response time

    图 17  4个参数与衔铁闭合时间、复位时间的关联度

    Figure 17.  Correlation between four parameters and armature closure time and reset time

    图 18  电-机械转换器实验装置

    Figure 18.  Experimental setup of electro-mechanical transducer

    图 19  优化前后动态特性

    Figure 19.  Dynamic characteristics before and after optimization

  • [1] ZHAO J H, WU X H, SONG Z H, et al. Practical hybrid model predictive control for electric pneumatic braking system with on-off solenoid valves[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2024, 238(10-11): 3253-3266. doi: 10.1177/09544070231180352
    [2] KATGERI D, HUBBALLI B. A review & progress on digital hydraulic pumps and valves[J]. Hidraulica, 2019(1): 116-123.
    [3] 丁凡, 姚健娣, 笪靖, 等. 高速开关阀的研究现状[J]. 中国工程机械学报, 2011, 9(3): 351-358.

    DING F, YAO J D, DA J, et al. Advances on high-speed on-off valves[J]. Chinese Journal of Construction Machinery, 2011, 9(3): 351-358(in Chinese).
    [4] 陈淑梅, 柯旭锟, 吴荣钰, 等. 耦合磁滞的电-机械转换器多场建模及参数优化[J]. 中南大学学报(自然科学版), 2022, 53(11): 4271-4281.

    CHEN S M, KE X K, WU R Y, et al. Multi-field modeling with hysteresis and optimization for electromechanical converter[J]. Journal of Central South University (Science and Technology), 2022, 53(11): 4271-4281(in Chinese).
    [5] TAN C, CHANG S Q, LIU L. Dynamic performance design and analysis of hybrid excited linear actuator for on-off valve[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 54(2): 199-209. doi: 10.3233/JAE-160069
    [6] CVETKOVIC D, COSIC I, SUBIC A. Improved performance of the electromagnetic fuel injector solenoid actuator using a modelling approach[J]. International Journal of Applied Electromagnetics and Mechanics, 2008, 27(4): 251-273. doi: 10.3233/JAE-2008-939
    [7] ZMOOD R B, ANAND D K, KIRK J A. The influence of eddy currents on magnetic actuator performance[J]. Proceedings of the IEEE, 1987, 75(2): 259-260. doi: 10.1109/PROC.1987.13726
    [8] ZHAO J H, YUE P F, WEI K B. Eddy current effects on the dynamic response of high-speed solenoid valve for common rail injector[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 62(3): 607-618. doi: 10.3233/JAE-190047
    [9] HARMER K, JEWELL G W, HOWE D. Transient performance of a short-stroke linear solenoid actuator[J]. IEE Proceedings-Electric Power Applications, 2002, 149(5): 379-384. doi: 10.1049/ip-epa:20020472
    [10] 范立云, 许德, 费红姿, 等. 高速电磁阀电磁力全工况关键参数相关性分析[J]. 农业工程学报, 2015, 31(6): 89-96.

    FAN L Y, XU D, FEI H Z, et al. Key parameters’ correlation analysis on high-speed solenoid valve electromagnetic force under overall operating conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 89-96(in Chinese).
    [11] ZHANG J, LIU P, FAN L, et al. Analysis on dynamic response characteristics of high-speed solenoid valve for electronic control fuel injection system[J]. Mathematical Problems in Engineering, 2020, 2020: 1-9.
    [12] LIU P, FAN L Y, HAYAT Q, et al. Research on key factors and their interaction effects of electromagnetic force of high-speed solenoid valve[J]. The Scientific World Journal, 2014, 2014: 567242.
    [13] SUN Z Y, LI G X, WANG L, et al. Effects of structure parameters on the static electromagnetic characteristics of solenoid valve for an electronic unit pump[J]. Energy Conversion and Management, 2016, 113: 119-130. doi: 10.1016/j.enconman.2016.01.031
    [14] WANG L, LI G X, XU C L, et al. Effect of characteristic parameters on the magnetic properties of solenoid valve for high-pressure common rail diesel engine[J]. Energy Conversion and Management, 2016, 127: 656-666. doi: 10.1016/j.enconman.2016.09.057
    [15] YANG L, GAO T X, DU X M, et al. Electromagnetic characteristics analysis and structure optimization of high-speed fuel solenoid valves[J]. Machines, 2022, 10(10): 964. doi: 10.3390/machines10100964
    [16] GUO J, LI L G, QIN P, et al. Optimization design of magnetic isolation ring position in AC solenoid valves for dynamic response performances[J]. Micromachines, 2022, 13(7): 1065. doi: 10.3390/mi13071065
    [17] TAO G, CHEN H Y, Y Y J, et al. Optimal design of the magnetic field of a high-speed response solenoid valve[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 555-558. doi: 10.1016/S0924-0136(02)00633-7
    [18] 高强, 朱玉川, 罗樟, 等. 高速开关阀的复合PWM控制策略分析与优化[J]. 北京航空航天大学学报, 2019, 45(6): 1129-1136.

    GAO Q, ZHU Y C, LUO Z, et al. Analysis and optimization on compound PWM control strategy of high-speed on/off valve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1129-1136(in Chinese).
    [19] 钟麒, 谢耿, 汪谢乐, 等. 多电压复合驱动的高速开关阀性能研究[J]. 机械工程学报, 2021, 57(4): 191-201. doi: 10.3901/JME.2021.04.191

    ZHONG Q, XIE G, WANG X L, et al. Performance analysis of high speed on/off valve by multi-voltages compound excitation[J]. Journal of Mechanical Engineering, 2021, 57(4): 191-201(in Chinese). doi: 10.3901/JME.2021.04.191
    [20] 刘浩, 赵丁选, 张祝新, 等. 基于BP神经网络的高速开关阀多级电压控制策略[J]. 农业机械学报, 2019, 50(4): 420-426.

    LIU H, ZHAO D X, ZHANG Z X, et al. Control strategy of high-speed switch valve under multistage adaptive voltage based on BP neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 420-426(in Chinese).
    [21] 贾文昂, 阮健, 李胜. 2D高速开关阀结构参数优化设计与实验[J]. 农业机械学报, 2016, 47(11): 391-398.

    JIA W A, RUAN J, LI S. Structure parameters optimization and experiments on 2D high-speed on-off valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 391-398(in Chinese).
    [22] WU S, ZHAO X Y, LI C F, et al. Multiobjective optimization of a hollow plunger type solenoid for high speed on/off valve[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3115-3124. doi: 10.1109/TIE.2017.2756578
    [23] LI L Y, ZHANG C M, YAN B P, et al. Research of a giant magnetostrictive valve with internal cooling structure[J]. IEEE Transactions on Magnetics, 2011, 47(10): 2897-2900. doi: 10.1109/TMAG.2011.2157902
    [24] XUE G M, ZHANG P L, HE Z B, et al. Design and experimental study of a novel giant magnetostrictive actuator[J]. Journal of Magnetism and Magnetic Materials, 2016, 420: 185-191. doi: 10.1016/j.jmmm.2016.07.037
    [25] LIU S F, YANG Y J, CAO Y, et al. A summary on the research of GRA models[J]. Grey Systems: Theory and Application, 2013, 3(1): 7-15. doi: 10.1108/20439371311293651
  • 加载中
图(19)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  61
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 录用日期:  2023-12-15
  • 网络出版日期:  2024-01-04
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答