留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WAIC网络上行多用户分簇比例公平访问方法

吴亚武 李峭 王彤 武俊杰

吴亚武,李峭,王彤,等. WAIC网络上行多用户分簇比例公平访问方法[J]. 北京航空航天大学学报,2025,51(11):3973-3981 doi: 10.13700/j.bh.1001-5965.2023.0607
引用本文: 吴亚武,李峭,王彤,等. WAIC网络上行多用户分簇比例公平访问方法[J]. 北京航空航天大学学报,2025,51(11):3973-3981 doi: 10.13700/j.bh.1001-5965.2023.0607
WU Y W,LI Q,WANG T,et al. Proportional fair access method for uplink multi-user clustering in WAIC networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3973-3981 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0607
Citation: WU Y W,LI Q,WANG T,et al. Proportional fair access method for uplink multi-user clustering in WAIC networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3973-3981 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0607

WAIC网络上行多用户分簇比例公平访问方法

doi: 10.13700/j.bh.1001-5965.2023.0607
基金项目: 

国家自然科学基金(62071023)

详细信息
    通讯作者:

    E-mail:avionics@buaa.edu.cn

  • 中图分类号: V243.1;TN92

Proportional fair access method for uplink multi-user clustering in WAIC networks

Funds: 

National Natural Science Foundation of China (62071023)

More Information
  • 摘要:

    无线局域网是航空电子机内无线通信(WAIC)机舱内无线互连的候选技术之一。借鉴IEEE 802.11ax标准定义的接入机制,并对上行多用户正交频分多址接入(OFDMA)进行改进,提出了一种基于比例公平的最小填充开销(PF-MPO)方法。该方法对多用户进行分簇管理,在保证簇之间比例公平性的条件下提高系统吞吐量,且能够通过调整簇内节点的传输持续时间减小填充开销;还可以在该方法基础上扩展形成设置排队延迟阈值的PF-MPO (WD-PF-MPO)方法,使排队延迟高于阈值的用户立即传输。仿真结果表明:与单纯追求平均吞吐量最大化的最大载干比(MAX C/I)方法相比,PF-MPO方法及WD-PF-MPO方法将系统的Jain公平指数提升至0.9以上,PF-MPO方法使最大传输延迟降低至少25%,且WD-PF-MPO方法能够在保证公平性的条件下使最大传输延迟进一步降低。

     

  • 图 1  WAIC网络系统架构

    Figure 1.  System architecture of WAIC network

    图 2  基于OFDMA的调度接入机制

    Figure 2.  OFDMA-based scheduling access mechanism

    图 3  设置排队延迟阈值的PF-MPO方法流程

    Figure 3.  PF-MPO method with queue delay threshold

    图 4  最大传输延迟与用户数量的变化曲线

    Figure 4.  Curves of maximum transmission delay vs. number of users

    图 5  Jain’s公平指数与用户数量的变化曲线

    Figure 5.  Curves of Jain’s fairness index vs. number of users

    图 6  用户簇最大饥饿时间的对数分布情况

    Figure 6.  Logarithmic distribution of maximum hunger times for user clusters

    图 7  平均传输延迟与用户数量的变化曲线

    Figure 7.  Curves of average transmission delay vs. number of users

    图 8  吞吐量与用户数量的变化曲线

    Figure 8.  Curves of throughput vs. number of users

    图 9  最大传输延迟与Jain’s公平指数在不同数据发送周期的分布情况

    Figure 9.  Distribution of maximum transmission delay and Jain’s fairness index in different data transmission periods

    表  1  仿真实验参数

    Table  1.   Simulation experimental parameters

    网络空
    间半径/m
    噪声功率谱
    密度/
    (dBm·Hz)−1
    中心
    频率/GHz
    带宽/
    MHz
    簇到达
    率/ns−1
    径到达
    率/ns−1
    路径损
    耗指数
    15 −174 4.3 20 0.13~0.25 1.67~2.88 2
    下载: 导出CSV
  • [1] SÁMANO-ROBLES R, TOVAR E, CINTRA J, et al. Wireless avionics intra-communications: current trends and design issues[C]//Proceedings of the 2016 11th International Conference on Digital Information Management. Piscataway: IEEE Press, 2016: 266-273.
    [2] RAMANATT P R, NATARAJAN K, SHOBHA K R. Challenges in implementing a wireless avionics network[J]. Aircraft Engineering and Aerospace Technology, 2019, 92: 482-494.
    [3] PARK P, DI MARCO P, NAH J, et al. Wireless avionics intracommunications: a survey of benefits, challenges, and solutions[J]. IEEE Internet of Things Journal, 2021, 8(10): 7745-7767. doi: 10.1109/JIOT.2020.3038848
    [4] DANG D K, MIFDAOUI A, GAYRAUD T. Fly-by-wireless for next generation aircraft: challenges and potential solutions[C]//Proceedings of the 2012 IFIP Wireless Days. Piscataway: IEEE Press, 2012: 1-8.
    [5] NEUHOLD D, SCHMIDT J F, KLAUE J, et al. Experimental study of packet loss in a UWB sensor network for aircraft[C]//Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems. New York: ACM, 2017: 137-142.
    [6] ZHANG Y, GUO X, CHEN L, et al. Propagation characterization for 5G networks in an avionics compartment at 60 GHz band [C]//Proceedings of the 2022 IEEE Conference on Antenna Mea-surements and Applications. Piscataway: IEEE Press, 2022: 1-5.
    [7] IEEE. Information technology−Telecommunications and information exchange between systems Local and metropolitan area networks−Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications[S].Piscataway: IEEE, 2012.
    [8] CHAMPAIGNE K. Techniques for improving reliablility of wireless sensor networks in flight applications[C]//Proceedings of the CANEUS/NASA Fly Wireles Workshop. Piscataway: IEEE Press, 2007: 1-25.
    [9] BANG I, NAM H, CHANG W, et al. Channel measurement and feasibility test for wireless avionics intra-communications[J]. Sensors, 2019, 19(6): 1294. doi: 10.3390/s19061294
    [10] DIMIC G, SIDIROPOULOS N D, ZHANG R F. Medium access control-physical cross-layer design[J]. IEEE Signal Processing Magazine, 2004, 21(5): 40-50. doi: 10.1109/MSP.2004.1328087
    [11] IEEE. Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency WLAN[S]. Piscataway: IEEE, 2021.
    [12] KARACA M, BASTANI S, PRIYANTO B E, et al. Resource mana-gement for OFDMA based next generation 802.11 WLANs[C]//Proceedings of the 2016 9th IFIP Wireless and Mobile Networking Conference. Piscataway: IEEE Press, 2016: 57-64.
    [13] KELLY F P, MAULLOO A K, TAN D K H. Rate control for communication networks: shadow prices, proportional fairness and stability[J]. Journal of the Operational Research Society, 1998, 49(3): 237-252. doi: 10.1057/palgrave.jors.2600523
    [14] JALALI A, PADOVANI R, PANKAJ R. Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system[C]//Proceedings of the IEEE 51st Vehicular Technology Conference. Piscataway: IEEE Press, 2000: 1854-1858.
    [15] QIU J, HUANG T. Packet scheduling scheme in the next generation high-speed wireless packet networks[C]//Proceedings of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications. Piscataway: IEEE Press, 2005: 224-227.
    [16] RUANGCHAIJATUPON N, JI Y S. Simple proportional fairness scheduling for OFDMA frame-based wireless systems[C]//Proceedings of the IEEE Wireless Communications and Networking Conference. Piscataway: IEEE Press, 2008: 1593-1597.
    [17] SAMBOU B, PEYRARD F, FRABOUL C. Scheduling avionics flows on an IEEE 802.11e HCCA and AFDX hybrid network[C]//Proceedings of the IEEE Symposium on Computers and Communications. Piscataway: IEEE Press, 2011: 205-212.
    [18] IEEE. Information technology--Local and metropolitan area networks--Specific requirements--Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements[S]. Piscataway: IEEE, 2005.
    [19] SADR S, ANPALAGAN A, RAAHEMIFAR K. Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems[J]. IEEE Communications Surveys & Tutorials, 2009, 11(3): 92-106.
    [20] GOLDSMITH A J, CHUA S G. Variable-rate variable-power MQAM for fading channels[J]. IEEE Transactions on Communications, 1997, 45(10): 1218-1230. doi: 10.1109/26.634685
    [21] JACOB M, CHEE K L, SCHMIDT I, et al. Influence of passengers on the UWB propagation channel within a large wide-bodied aircraft[C]//Proceedings of the 2009 3rd European Conference on Antennas and Propagation. Piscataway: IEEE Press, 2009: 882-886.
    [22] 左沅君, 李峭, 熊华钢, 等. 航空电子MB-OFDM-UWB无线互连信道分析与仿真[J]. 航空学报, 2019, 40(7): 322739. doi: 10.7527/S1000-6893.2019.22739

    ZUO Y J, LI Q, XIONG H G, et al. Analysis and simulation of avionics MB-OFDM-UWB wireless interconnection channel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322739(in Chinese). doi: 10.7527/S1000-6893.2019.22739
    [23] SEDIQ A B, GOHARY R H, SCHOENEN R, et al. Optimal tradeoff between sum-rate efficiency and Jain’s fairness index in resource allocation[J]. IEEE Transactions on Wireless Communications, 2013, 12(7): 3496-3509. doi: 10.1109/TWC.2013.061413.121703
    [24] ITU. Technical characteristics and spectrum requirements of wireless avionics intra-communications systems to support their safe operation: ITU-R Report M2283-0[S]. Geneva: ITU, 2013.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  42
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-25
  • 录用日期:  2023-12-07
  • 网络出版日期:  2023-12-13
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答