留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多维泰勒网的无人车有限时间路径跟踪控制

吴玉崭 李晨龙 龚光红 卢俊言

吴玉崭,李晨龙,龚光红,等. 基于多维泰勒网的无人车有限时间路径跟踪控制[J]. 北京航空航天大学学报,2025,51(11):3641-3648 doi: 10.13700/j.bh.1001-5965.2023.0610
引用本文: 吴玉崭,李晨龙,龚光红,等. 基于多维泰勒网的无人车有限时间路径跟踪控制[J]. 北京航空航天大学学报,2025,51(11):3641-3648 doi: 10.13700/j.bh.1001-5965.2023.0610
WU Y Z,LI C L,GONG G H,et al. Finite-time path tracking control of unmanned vehicles based on multi-dimensional Taylor network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3641-3648 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0610
Citation: WU Y Z,LI C L,GONG G H,et al. Finite-time path tracking control of unmanned vehicles based on multi-dimensional Taylor network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3641-3648 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0610

基于多维泰勒网的无人车有限时间路径跟踪控制

doi: 10.13700/j.bh.1001-5965.2023.0610
详细信息
    通讯作者:

    E-mail:lichenlong007@126.com

  • 中图分类号: TP273

Finite-time path tracking control of unmanned vehicles based on multi-dimensional Taylor network

More Information
  • 摘要:

    针对含有模型不确定和测量噪声条件下的无人车路径跟踪控制问题,提出基于多维泰勒网(MTN)的有限时间路径跟踪控制方案。利用MTN模型刻画无人车模型的不确定性,改进的反向传递(BP)算法作为其学习算法;设计自适应MTN滤波器来滤除测量噪声,MTN作为滤波器,最小均方(LMS)算法作为其学习算法;设计MTN有限时间控制器对无人车进行精确路径跟踪控制,其可以快速准确跟踪参考路径;根据有限时间控制理论,给出了收敛性证明。通过无人车仿真实验验证了所提方法的有效性。

     

  • 图 1  无人车模型

    Figure 1.  Unmanned vehicle model

    图 2  参考噪声未知的自适应去噪

    Figure 2.  Adaptive noise cancellation with unknown reference noise

    图 3  MTN有限时间路径跟踪控制方案

    Figure 3.  Finite time path tracking control scheme based on MTN

    图 4  模型不确定性情况下跟踪轨迹

    Figure 4.  Tracking trajectory under model uncertainty

    图 5  模型不确定性情况下跟踪误差

    Figure 5.  Tracking error under model uncertainty

    图 6  模型不确定性和测量噪声情况下跟踪轨迹

    Figure 6.  Tracking trajectory under model uncertainty and measurement noise

    图 7  模型不确定性和测量噪声情况下跟踪误差

    Figure 7.  Tracking error under model uncertainty and measurement noise

    表  1  复杂度分析

    Table  1.   Complexity analysis

    模型 结构 加法数 乘法数
    MTNE 4-15-1 14 25
    MTNF 4-15-1 14 25
    下载: 导出CSV
  • [1] CHEN G, CHEN S, LANGARI R, et al. Driver-behavior-based adaptive steering robust nonlinear control of unmanned driving robotic vehicle with modeling uncertainties and disturbance observer[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8183-8190. doi: 10.1109/TVT.2019.2922452
    [2] VICENTE B A H, TRODDEN P A, ANDERSON S R. Fast tube model predictive control for driverless cars using linear data-driven models[J]. IEEE Transactions on Control Systems Technology, 2023, 31(3): 1395-1410. doi: 10.1109/TCST.2022.3224089
    [3] 李雷, 贾新春, 贾祝融, 等. 带测量噪声干扰的无人驾驶汽车路径跟踪控制[J]. 山西大学学报(自然科学版), 2010, 33(3): 384-387.

    LI L, JIA X C, JIA Z R, et al. Path tracking control for autonomous vehicle with measurement noise[J]. Journal of Shanxi University (Natural Science Edition), 2010, 33(3): 384-387(in Chinese).
    [4] AMER N H, ZAMZURI H, HUDHA K, et al. Modelling and control strategies in path tracking control for autonomous ground vehicles: a review of state of the art and challenges[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2): 225-254.
    [5] WU Y L, LI S M, ZHANG Q J, et al. Route planning and tracking control of an intelligent automatic unmanned transportation system based on dynamic nonlinear model predictive control[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16576-16589. doi: 10.1109/TITS.2022.3141214
    [6] GU Z, YIN T T, DING Z T. Path tracking control of autonomous vehicles subject to deception attacks via a learning-based event-triggered mechanism[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5644-5653. doi: 10.1109/TNNLS.2021.3056764
    [7] AGUIAR A P, HESPANHA J P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty[J]. IEEE Transactions on Automatic Control, 2007, 52(8): 1362-1379. doi: 10.1109/TAC.2007.902731
    [8] AN D D, LIU J, ZHANG M, et al. Uncertainty modeling and runtime verification for autonomous vehicles driving control: a machine learning-based approach[J]. Journal of Systems and Software, 2020, 167: 110617. doi: 10.1016/j.jss.2020.110617
    [9] 张守武, 李擎, 王恒, 等. 非匹配不确定性影响下的无人车路径跟踪控制[J]. 控制与决策, 2022, 37(1): 160-166.

    ZHANG S W, LI Q, WANG H, et al. Path following control for autonomous vehicles with mismatched uncertainties[J]. Control and Decision, 2022, 37(1): 160-166(in Chinese).
    [10] KELIRIS C, POLYCARPOU M M, PARISINI T. An integrated learning and filtering approach for fault diagnosis of a class of nonlinear dynamical systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(4): 988-1004. doi: 10.1109/TNNLS.2015.2504418
    [11] 张超. 具有噪声干扰的非线性时变系统多维泰勒网优化控制[D]. 南京: 东南大学, 2018.

    ZHANG C. Optimal control of multi-dimensional Taylor network for nonlinear time-varying systems with noise interference[D]. Nanjing: Southeast University, 2018(in Chinese).
    [12] 李晨龙. 非线性时滞定常系统多维泰勒网辨识与预测控制[D]. 南京: 东南大学, 2020.

    LI C L. Multi-dimensional Taylor network identification and predictive control for nonlinear time-delay time-invariant systems[D]. Nanjing: Southeast University, 2020(in Chinese).
    [13] SCHWARTING W, ALONSO-MORA J, PAULL L, et al. Safe nonlinear trajectory generation for parallel autonomy with a dynamic vehicle model[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2994-3008. doi: 10.1109/TITS.2017.2771351
    [14] LI R M, ZHANG L W, HAN L, et al. Multiple vehicle formation control based on robust adaptive control algorithm[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(2): 41-51. doi: 10.1109/MITS.2017.2666581
    [15] YAN Y, DU H P, WANG Y F, et al. Multi-objective asymmetric sliding mode control of connected autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16342-16357. doi: 10.1109/TITS.2022.3149985
    [16] AWAD N, LASHEEN A, ELNAGGAR M, et al. Model predictive control with fuzzy logic switching for path tracking of autonomous vehicles[J]. ISA Transactions, 2022, 129: 193-205. doi: 10.1016/j.isatra.2021.12.022
    [17] FANG P J, CAI Y F, CHEN L, et al. A high-performance neural network vehicle dynamics model for trajectory tracking control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(7): 1695-1709. doi: 10.1177/09544070221095660
    [18] KABZAN J, HEWING L, LINIGER A, et al. Learning-based model predictive control for autonomous racing[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3363-3370. doi: 10.1109/LRA.2019.2926677
    [19] SUN K K, QIU J B, KARIMI H R, et al. A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(6): 3968-3979.
    [20] REN C C, PARK J H, HE S P. Positiveness and finite-time control of dual-switching Poisson jump networked control systems with time-varying delays and packet drops[J]. IEEE Transactions on Control of Network Systems, 2022, 9(2): 575-587. doi: 10.1109/TCNS.2022.3165075
    [21] 李晨龙, 严洪森. 基于多维泰勒网的多入多出非线性时滞系统辨识[J]. 计算机应用研究, 2022, 39(8): 2432-2437.

    LI C L, YAN H S. Identification of MIMO nonlinear time-delay system using multi-dimensional Taylor network[J]. Application Research of Computers, 2022, 39(8): 2432-2437(in Chinese).
    [22] 李晨龙, 严洪森. 基于多维泰勒网的超前d步预测模型研究[J]. 控制与决策, 2021, 36(2): 345-354.

    LI C L, YAN H S. d-step-ahead predictive model based on multi-dimensional Taylor network[J]. Control and Decision, 2021, 36(2): 345-354(in Chinese).
    [23] YAN H S, ZHANG J J, SUN Q M. MTN optimal control of SISO nonlinear time-varying discrete-time systems for tracking by output feedback[J]. Intelligent Automation and Soft Computing, 2018, 3: 487-507.
    [24] YAN H S, DUAN Z Y. Tube-based model predictive control using multidimensional Taylor network for nonlinear time-delay systems[J]. IEEE Transactions on Automatic Control, 2021, 66(5): 2099-2114. doi: 10.1109/TAC.2020.3005674
    [25] KLAMBAUER G. Mathematical analysis[M]. New York: Marcel Dekker Inc, 1975.
    [26] 闫振争, 庄继晖, 程晓鸣, 等. 自抗扰算法在无人车路径跟踪控制中的应用[J]. 重庆理工大学学报(自然科学), 2021, 35(3): 61-70.

    YAN Z Z, ZHUANG J H, CHENG X M, et al. Active disturbance rejection algorithm applied to path tracking in autonomous vehicles[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(3): 61-70(in Chinese).
    [27] DONMEZ B, NEHME C, CUMMINGS M L. Modeling workload impact in multiple unmanned vehicle supervisory control[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010, 40(6): 1180-1190. doi: 10.1109/TSMCA.2010.2046731
    [28] SUN S L. Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor[J]. Automatica, 2004, 40(8): 1447-1453. doi: 10.1016/j.automatica.2004.03.012
    [29] ZWEIRI Y H, WHIDBORNE J F, SENEVIRATNE L D. A three-term backpropagation algorithm[J]. Neurocomputing, 2003, 50: 305-318. doi: 10.1016/S0925-2312(02)00569-6
    [30] ZWEIRI Y H, SENEVIRATNE L D, ALTHOEFER K. Stability analysis of a three-term backpropagation algorithm[J]. Neural Networks, 2005, 18(10): 1341-1347. doi: 10.1016/j.neunet.2005.04.007
    [31] PEARLMUTTER B A. Gradient descent: second-order momentum and saturating error[C]//Proceedings of the Advances in Neural Information Processing Systems. [S. l. ]: NIPS, 1992: 887-894.
    [32] SHU T X, CHEN J H, BHARGAVA V K, et al. An energy-efficient dual prediction scheme using LMS filter and LSTM in wireless sensor networks for environment monitoring[J]. IEEE Internet of Things Journal, 2019, 6(4): 6736-6747. doi: 10.1109/JIOT.2019.2911295
    [33] BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766. doi: 10.1137/S0363012997321358
    [34] 丁锋. 系统辨识算法的复杂性、收敛性及计算效率研究[J]. 控制与决策, 2016, 31(10): 1729-1741.

    DING F. Complexity, convergence and computational efficiency for system identification algorithms[J]. Control and Decision, 2016, 31(10): 1729-1741(in Chinese).
    [35] GOLUB G H, VAN LOAN C F. Matrix computations[M]. Baltimore: JHU Press, 2012.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  71
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-25
  • 录用日期:  2023-10-11
  • 网络出版日期:  2023-10-13
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答